Wurzelbildung von Dougasiens auf Pseudogleyten im Nördlichen Oberschwaben.

von Klaus von Wilpert

Gliederung

1. Einleitung
2. Material und Methode
3. Ergebnisse
4. Diskussion und Schlußfolgerung
5. Zusammenfassung

Literatur

1. Einleitung

Die Dougasie gilt als Baumbart, der auf Wechselwurzelstreu in ihrer Durchwurzelungstiefe und in der mechanischen Wurzelenergie ähnlich negativ reagiert wie die Fichte (Köster et al. 1968, Jahns et al. 1971).

Bei den Standortskartierungen der letzten Jahre im Bereich der Waldbezirksgruppe Nördliches Oberschwaben wurde dagegen häufig die Beobachtung gemacht, daß die Dougasie, insbesondere auf labilen, wechselweiten Standortseinheiten, in Feuchtbeständen gruppenn- oder horstweises beigemischt vorkommt und dort auch im höheren Bestandesalter stabil bleibt, obwohl sie dann bis 10 m über das Kronendach der umgebenden Feuchtbestände hinausragt und mit großer, schwerer Krone erheblichen Windbelastungen ausgesetzt ist. (Diese kleinflächigen Dougasievorkommen sind offensichtlich in der Regel im Wege der Nachbesserung umstande).

Ausgezogen davon wurde im staatlichen Forstamt Biberach die vorliegende Studie durchgeführt, die folgende Fragestellungen zum Thema hat:

- Gibt es im Nördlichen Oberschwaben innerhalb der Pseudogley bei einer Christiania von Staubau und der Höhe des Staubauhöchststandes bei gleichem Substrat und gleicher oder ähnlicher profilmorphologischer Ausprägung?

- Ist die Ausprägung der Stockraumbewurzelung von Dougasien im Grad der Tiefenentschließung und der Durchwurzelungsmöglichkeit entsprechend differenziert?

- Anhand einer ausreichend hohen Zahl von Wurzelgrabungen sollen die vermuteten Zusammenhänge zwischen Stauwasserregime und Wurzelentwicklung möglichst klar und für den hierigen Bereich repräsentativ dargestellt werden.

2. Material und Methode

2.1 Regionale Gegebenheiten

Innerhalb der Waldbezirksgruppe Nördliches Ober- schwaben liegt die Untersuchungsgebiet im Waldbezirk "Rißmoräne von Biberach-Sauingen". Das Gebiet ist von der flachwellige, wenig bewegten Rißmoränenlandschaft geprägt. In der Standortsbilanz sind wechselweite Standortseinheiten mit dem hohen Flächenanteil von ca. 30% vertreten.

Im betrachteten Bereich (Pb. 2. Biberach) liegen die durchschnittlichen Jahresniederschläge bei 800 mm, wovon etwa 50% in der Vegetationszeit fallen. Die durchschnittliche Jahres- temperatur beträgt 7,6°C.

2.2 Bodenbildendes Substrat

Das bodenbildendes Substrat aller hier dargestellten Standorte besteht aus schlaff fließendem bis gelegentlich sandigen Lehmen der rißmooränenischen Moränenverwitterung. Da auch der unverwustete Geschiebetaler nie steinfrei ist enthalten, die daraus sich entwickelnden Boden immer einen gewissen Skeletanteil. Im endmoränenförmigen Bereich sind sie insgesamt feiner. Die rißmooränenische Grundmoräne ist im endmoränenförmigen Bereich hier stellenweise sehr flach ausgehoben und lagert auf relativ dichten territorial Tonen.

2.3 Bodentypen

Die folgende Tabelle 1 gibt einen Überblick über die hier dargestellten Bodenvarianten.

2.4 Charakterisierung des Stauwasserregimes

Das Stauwasserregime sollte durch einige griffige Daten gekennzeichnet werden, wobei der methodische Aufwand möglichst gering gehalten werden sollte. Hierfür bot sich die Methode der Pegelmessung (Piezometrie) an.

Die Pegelrohr dient als gut geöffnete Klima des Pegelraumes, die die Stauwasserpiegel innen im S. Horizonte befindet. Im S. Horizont stellt sich, bedingt durch die hohe Wasserleitfähigkeit, nach kurzer Reaktionszeit im Pegelrohr die gleiche Stauwasserpiegel ein wie im Pegelrohr des Bodens.

Im S. Horizont sind diese Aussagen nur noch bedingt möglich, da hier aufgrund der sehr niedrigen Wasserleitfähigkeit die spiegelschwankungen im Pegelrohr den Schwankungen des Stauwasserpiegels im Boden nur noch sehr träge folgen.
<table>
<thead>
<tr>
<th>Profil Nr.</th>
<th>Waldarte</th>
<th>Bodentyp</th>
<th>Tiefe des Stauwasserleiters (cm)</th>
<th>Tiefe der Stauwasserleiters (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 VII, 7</td>
<td>Pseudogley-Parabraunerde</td>
<td>bis 40 cm u. F.</td>
<td>ab 45 cm</td>
<td></td>
</tr>
<tr>
<td>2 VII, 13</td>
<td>Parabraunerde-Pseudogley</td>
<td>bis 15 cm u. F.</td>
<td>ab 30 cm</td>
<td>ab 60 cm</td>
</tr>
<tr>
<td>3 VII, 12</td>
<td>Pseudogley</td>
<td>0 - 15 cm u. F.</td>
<td>ab 15 cm</td>
<td>ab 40 - 50 cm</td>
</tr>
<tr>
<td>4 VII, 12</td>
<td></td>
<td></td>
<td>ab 15 cm</td>
<td>ab 40 - 50 cm</td>
</tr>
<tr>
<td>5 VII, 12</td>
<td></td>
<td></td>
<td>ab 15 cm</td>
<td>ab 40 - 50 cm</td>
</tr>
<tr>
<td>6 VII, 16</td>
<td></td>
<td></td>
<td>ab 15 cm</td>
<td>ab 40 - 50 cm</td>
</tr>
<tr>
<td>7 VII, 16</td>
<td>Gley-Pseudogley</td>
<td></td>
<td>0 - 40 cm</td>
<td>ab 40 cm</td>
</tr>
<tr>
<td>8 VII, 16</td>
<td>Gley-Pseudogley</td>
<td></td>
<td>0 - 40 cm</td>
<td>ab 40 cm</td>
</tr>
<tr>
<td>9 VII, 16</td>
<td>Pseudogley-Gley</td>
<td></td>
<td>0 - 40 cm</td>
<td>ab 40 cm</td>
</tr>
</tbody>
</table>

Entsprechend wurden für die Einbringung der Pegelrohre folgende Grundsätze beachtet:
- Der Durchmesser der Rohre wurde mit 6 cm so klein wie möglich gehalten, um die Reaktionszeit der Pegel abzukürzen.
- Die Pegelrohre sollten den S_p-Horizont erreichen, aber nicht sehr weit in ihm liegen, damit der Durchtritt durch die hydrologischen Eigenschaften nicht stören würden. Als maximale Pegelhöhe wurden einheitlich 110 cm festgelegt.

Das Ableitervalvem betrug, mit wenigen Ausnahmen, eine Woche. Die Meßperiode begann am 30. 3. 1983 und endete am 6. 4. 1984, sie umfasste also die Vegetationsperiode und eine Winterreihenperiode.

Von den mit dieser einfachen Methode darstellbaren Kriterien "Stauwasserhochstände" und "Dauer von Stauphasen" ist zu erwarten, daß sie eine hinreichend gute Charakterisierung der für die Ausprägung des Wurzelwerkes wichtigsten ökologischen Eigenschaften von Pseudogleyen ergeben, da sie den Wurzelwachstum außerdem auch derartigen starken Wuchsablauf hinsichtlich wichtiger Sauerstoffausstattung beschreiben.

Die direkte Beobachtung des Sauerstoffgehaltes (zum Beispiel über Sauerstofffreibausmessungen etc.) hätten einen unverzüglich hohen Meßaufwand bedeutet, aber auch Wassergehalts- und Saugspannungsmessungen, die für eine Beobachtung des Wurzelwurzeles über die direkte Stauphase hinaus im unregelmäßigen Bereich notwendig gewesen wären.

2.5 Auswahl der Probenbäume
Bei der Auswahl der Douglasien wurden dazu die auf der Untersuchung einbezogenen, um störende Bestandesfaktoren auszuschließen; die Bäume sollten möglichst alt sein, damit die Ausscheidung des Wurzelwerkes schon mehr oder weniger abgeschlossen ist. Die zweite Förderung war zu kleiner bis zu großen, die Bestände, insbesondere auf der extremen Pseudogleyen, alle relativ jung sind. Sie stocken oftmals auf Stammwurzeln der 60er Jahre. So mußten gelegentlich Wurzelbilder im Alter zwischen 18 und 50 Jahren miteinander verglichen werden.

2.6 Vorgehen bei der Wurzelschnitt
Wie die folgende Skizze zeigt, wurden die herauszupräparierenden Wurzeldreiecke auf etwa 180° in etwa 1 m Abstand vor dem Stamm von einem 60 bis 80 cm tiefen Arbeitsgrab umgeben. Die durch den Arbeitsgrabgrund durchgehenden Wurzeln wurden in etwa 1 m Länge abgetrennt (Abbildung 1).

Mittels einer schweren Brechstange wurde vom Arbeitsgrab aus die Erde zwischen den verbleibenden Wurzeln herausgebrochen, so daß, ausgehend von der Stammmitte, ungefähr in einem Halbkreis von 2 m Durchmesser das Wurzelwerk blockiert wurde.

Für die Präparation eines Wurzelsstockes benötigte ein Waldarbeiter unter den gegebenen Bedingungen ca. 4 Stunden. An-
gesichts dieses relativ geringen Aufwandes erscheint es möglich, ähnliche Untersuchungen in größeren Umfang zur Untersuchung der Ergebnisse der praktischen Standortskartierung durchzuführen.

Aus der Arbeitsmethode ergibt sich, daß die Charakterisierung der betrachteten Wurzelstücke anhand der für die Architektur des Wurzelwerkes maßgeblichen Grobwurzeln (Durchmesser > 5 mm) und Schwallwurzeln (Durchmesser 2–5 mm) erfolgt. Feinwurzeln (Durchmesser 1–2 mm) und insbesondere Feinstwurzeln (Durchmesser < 1 mm) können mit der hier verwendeten Methode nur ungenügend erfaßt werden (Kostler et al. 1968). Die Grobwurzeln sind in der weiteren Beschreibung in Mittel- (Durchmesser 5–20 mm) und Starkwurzeln (Durchmesser > 20 mm) untergliedert.

2.7 Darstellung des Ergebnisses

Die Wurzelstücke wurden schwarz-weiß fotografiert. Dabei hat es sich als sehr günstig erwiesen, stärkere Wurzeln in der Schattenzone des Stockes mit Kreide weiß anzufärben, damit sie sich besser vom Hintergrund abheben.

Jede Wurzelerfassung wurde außerdem auch farbig fotografiert (aus Kostengründen kann nur ein Profil dargestellt werden).

3. Ergebnisse

Im folgenden werden zunächst die einzelnen Wurzelprofile beschrieben (Abschnitt 3.1), danach die Ergebnisse der Pegelmessungen dargestellt (Abschnitt 3.2), dann in einer zusammenfassenden Betrachtung die Schlüsse aus den Einzelbeobachtungen gezogen (Abschnitt 4).

3.1 Wurzelprofile

Die Reihenfolge schreitet von den am wenigsten wechselwirkenden zu den am meisten stämmigen Standorten fort, so weit sie in die Untersuchung einbezogen werden konnten.

Wurzelprofil auf Pseudogley-Parabraunerde

Profil Nr. 1

Im Pegel dieses Wurzelprofils wurde in der gesamten Meßperiode nie freies Stauwasser gemessen, was die Vermutung unterstützen, daß es sich bei der Marmorierung des Profils um eine relativ ausdauernde Form der Standortskartierung in einer extern starken Auffüllungsphase (30.03. 1983 bis Ende Mai 1983) lag.

Abbildung 2

Die untersuchte 18jährige Douglasie stand herrschend in Einmischung in einem Fichten-Stangenholz auf gemischten Douglasien- und Buchenanteilen.

Douglasie 18-jährig auf Pseudogley - Parabraunerde
4-5 Hauptwurzelstränge

Die Wurzel besteht aus 4–5 kräftigen, mit ca. 30° schräg abwärts laufenden Herzwurzeln, von denen relativ schwache Sekten nach unten vorstoßen (Abbildung 2). Die am Gegen sitz sehr starken Herzwurzeln werden nach 30–40 cm Länge plötzlich sehr viel schwächer und lösen sich nach 60–80 cm Länge in feinwurzelschüchtern auf oder werden sehr schwach (±1 cm). In die Tiefe stößt keine starke Wurzel weiter als 60 cm vor. Aufsattelung ist im oberflächennahen Bereich ein System aus schwächeren, wechselseitig ablaufenden Abflüssen.

Gesamtheit

Die Wurzel macht, insbesondere in ihren äußeren Bereichen, einen verquirlten, kongigen Eindruck. Zwar ist die Charakteristik des Herz- bis Herz-Senkerwurzelsystems erkennbar. Die Hauptwurzeln lösen sich aber relativ früh auf und sind relativ schwach.

Profil auf Parabraunerde-Pseudogley

Profil Nr. 2

Stauwasserregime

Im Stauwasserprofil dieses Profils (Abbildung 18 b) fällt der sehr bewegte Kurvenverlauf auf. Das Profil reagiert relativ schnell und mäßig gut auf Schüttunsschläuchen, die aber, auch bei voller Auffüllung, nicht sehr weit in den Oberboden hinein reichen. Die mittlere Obergrenze der Ausschläuche erreicht 30 cm und wird nur selten durch schwache Spitzene, die nicht länger als etwa 2–4 Tage dauernd, bis zu maximal 45 cm überschritten.

Baum

Die Douglasie stand absolut vorherrscht an Rand zwischen einem Fichten-Stangenholz und einem Bestandsfreien aus Eichen und sonstigen Laubholzern; sie ist 26jährig.
Wurzelprofile auf Pseudogley
Profil Nr. 3

Waldort: Distrikt V (Lindenhagen), Abteilung 12.
Geologenmorphologie: Das Profil liegt auf einer flach nach Norden geneigten Ebene in einem ganz schwach ausgeprägten Muldenzug, südlich davon befindet sich eine ausgeprägte Riß-Endmoränenkuppe.
Bodentyp: Pseudogley.
Wasserhaushalt: wechselhaft feucht.
Standortfeinheit: wechselnd steif bis marmoriert (Lehm mit grauem Oberhorizont).

Stauwassergang
Der Stauwassergang dieses Profils (Abbildung 15 b) zeigt einen im Vergleich zu anderen Kurven (besonders der Profile 2, 4, 6) relativ ruhigen Verlauf mit nur wenigen starken Ausschlägen. Sie liegt mit ihren Spitzen im unteren Bereich der Pseudogley-Kurven. Der höchste Spitzenwert, der kurzfristig erreicht wird, liegt bei 35 cm unter Flur. Deutlich tiefer bewegt sich nur die Kurve von Profil 2 (Parabraunerde-Pseudogley) und die Kurve 7 (Pseudogley).

Baum
Die untersuchte 50jährige Douglasie stand in Einzelbilderung in einem Buchenbaumholz mit einzelnen und gruppenweises eingesprengten Tannen und Douglasien. Sie übertrug absolut vorherrschend das Kronendach um 5–6 m.

Wurzel
Die Wurzel ist als typisches Herzwurzelsystem mit guter Tiefenerschließung ausgebildet, obwohl das Bodenprofil alle Merkmale des Pseudogleys zeigt (Abbildungen 5 und 6).
Am Stumpf sind 7 Hauptwurzelstränge angelegt, die in Stockhöhe als mächtige, ovale Stützwurzeln von bis zu 25 cm Stärke ausgebildet sind. Die Hauptwurzelstränge dringen mit einem relativ steilen Winkel von 40–45° schräg nach unten vor. In ca. 80 cm Abstand vom Stumpf ist eine schwächere Mittelwurzeltätigkeit, die vom Hauptwurzeltrampel mit flacherem Einfallswinkel nach oben abzweigt, angeleutet. (Durchmesser zwischen 3 und 7 cm). Im gleichen Bereich häufen sich senkrechtige Abläufe, die mit steilem Winkel nach unten ziehen.

Abbildung 4: Profil Nr. 2. Douglasienwurzel auf Parabraunerde-Pseudogley mit auffallend hoher Feinwurzelintensität. (Größenvergleich 80 cm).

60
Im gesamten Wurzelnbereich fallen viele Senker auf, die einzeln oder in Gruppen von den Hauptwurzeln aus nach unten ziehen und an der Sohle der Grube in 70 cm Tiefe, d.h. voll im marinierten Bereich, noch Stärken von 1–5 cm, im Durchschnitt von ca. 3 cm, haben.

Der Feinwurzelanteil ist im Vergleich zu den meisten anderen Wurzelprofilen relativ gering. Das Wurzelwerk besteht hauptsächlich aus Großwurzeln, einigen Mittelwurzeln und relativ wenig Feinwurzelbrüchen, die unregelmäßig über den gesamten Wurzelraum zerstreut sind, dabei teilweise als linear verteilte Feinwurzelbahnen entlang der Unterseite der Großwurzeln.

Gesamtberechnung

Profil Nr. 4

Waldgut: Distrikt V (Lindenhau), Abteilung 12 (zweckentscheidend);
Lage: Bodenprofil, Bodentyp: Wasserlöslichkeit und Standortseignis sind mit dem vorausgehend beschriebenen Wurzelprofil vergleichbar, das nur rund 50 m von diesem entfernt ist. Das Bodenprofil weist hier stellenweise auffällige rostrote Beläge auf Holzaustauschgrenze auf, die bis in die obersten Bodenschichten reichen.

Der Stauwassergang (Pegelkurve Nr. 4 in Abbildung 18 bis) ist ebenfalls den im Parallelprofil beschriebenen Verhältnissen sehr ähnlich. In der Auffüllungsphase scheint das Stauwasser etwas höher zu stehen (bis 27 cm unter Flur), in den Austrocknungsphasen etwas tiefer.

Baum

Die hier beschriebene Douglasie stand in mitherrschender bis beherrschender Position in einer kleinen Tannengruppe im Laubholzbestand.
Wurzel

Gesambeurteilung

Die Wurzeldichte, insbesondere die Feinwurzeldichte, ist sehr hoch, wobei die mechanische Wurzelenergie aufgrund der fehlenden Ausdifferenzierung nicht sehr ausgeprägt ist. Dieses Wurzelprofil erweckt den Eindruck, daß durch die Einschränkung des Kronenraumes hier auch das Wurzelwerk in der Entwicklung zurückgeblieben ist. Es reicht offensichtlich nicht über den Rand der maximalen Kronenausdehnung hinaus.

Profil Nr. 5

Waldort: Distrikt VIII (Aspernau), Abteilung 3.
Geländemorphologie: Dieses Wurzelprofil liegt auf einer schwach nach NW geneigten Fläche, die einwärts nördlich in eine ansichtige Senke mündet. Die gesamte Fläche ist von ausgearbeiteten Hochwasserbeeten überzogen. Die Senke stockt sich ca. 50 cm über die Tiefpunkte der Oberwasserkörper der Senke. Das hier beobachtete Wurzelprofil liegt in der Senke.
Bodentyp: Pseudogley.
Wasserhaushalt: wechselhaft.

Stauwassergang

Im Bereich dieses Wurzelprofils wurden drei Stauwassergebiete angelegt. Ein Pegel befindet sich in der Senke direkt beim Wurzelprofil (Stauwassergang dargestellt in Abbildung 8b, Pegel 5). Der zweite liegt in der Senke ca. 100 m unterhalb des Wurzelprofils, um durch die künstlichen Senkenzüge zwischen den Hochwasserbeeten eventuell verursachte Stauwasserbewegungen zu minimieren. Der dritte Pegel ist auf dem Scheitel des Hochwasserbeetes angelegt.

Die beiden Pegel in der Senke zeigten einen sehr ähnlichen Stauwassergang. Charakteristisch sind bei diesen Pegeln kurze, starke Stauwasserspitzen, was eine Sammelwirkung und beschleunigten Abfluß des Stauwassers durch die künstlichen Senkenzüge vermuten läßt. Die höchste Stauwasserspitze, die maximal 2–3 Tage andauerte, lag bei 30 cm.

Der weiter hangabwärts liegende Pegel füllt sich bei beginnender Auffüllung früher als der obere; bei voller Auffüllung liegt der Wasserstand des oberen Pegel über dem des unteren. Bei beginnender Abtrocknung ist das untere Pegelrohr wieder höher aufgefüllt. Diese Beobachtungen deuten auf relativ starke Stauwasserverwehungen hin.

Der Pegel auf dem Scheitel des Hochwasserbeetes zeigte eine freie Stauwasseranlage.
Baum

Die hier beschriebene 44jährige Douglastie stand in Einzelmi-
schung in einem Fichtenbaumholz in vorherrschender Posi-
tion.

Wurzel

Am Stock sind 6 kräftige, am Ansatz hochoval verstärkte Hauptseitenwurzelsstränge angelegt (Abbildungen 8 und 9). Die Hauptseitenwurzelsstränge haben einen relativ kleinen Ab-
laufwinkel von 40–55°. Von den Hauptseitenwurzeln läuft in ca. 30 cm Tiefe eine beinahe horizontal verlaufende Starkwur-
zeltage auf der Oberseite mit Stärken zwischen 3 und 8 cm ab. Nach unten stoßen zahlreiche Sanker mit Dicken zwischen 1
und 6 cm vor. Sie haben in 70 cm Tiefe noch 1–3 cm (im Durch-
chnitt 2 cm) Durchmesser. Der Hauptseitenwurzelstrang spalt-
tet in ca. 40 cm Tiefe eine zweite horizontale Etage ab und ver-
läuft mit weniger stelllem Ablaufwinkel (ca. 30 Grad) weiter
nach unten. Er löst sich in ca. 75 cm Tiefe in zahlreiche Mittel-
wurzeln auf.

Die Feinwurzelintensität ist von mittlerer Stärke. Die Fein-
wurzeln sind in Büschen über den gesamten Wurzelraum ver-
teilt.

Gesambeurteilung

Das Wurzelwerk dieses Baumes ist als Herzwurzelsystem an-
zuprechen, das eine hohe mechanische Wurzelenergie und

eine gute Feinwurzelintensität aufweist. Alle Wurzelstämke,

Gröb-, Mittel- und Feinwurzeln sind in einem ausgewogenen

Verhältnis vertreten. An der Grenze zum dichteren Unterbo-
den wird der Ablaufwinkel der Hauptseitenwurzeln flacher.

Profil Nr. 6

Waldort: Distrikt V (Lindengau), Abteilung 6.

Geländemorphologie: Dieses Nailodenprofil liegt in einer sehr flach aus-
gepflanzt, nach NO ziehenden Mulde. Westlich schließt eine Kuppe
der 881 Endmoräne an.

Bodenotyp: Pseudogley

Wasserhaushalt: wechselfeucht.

Standortseitig: verzahnter wechselwechselder maromierter Lehnm (mit
grauem Oberboden).

Stauwassergang

Der Stauwassergang (Kurve 6 in Abbildung 18 b) ist unter
den Pseudogleykurven durch einen sehr unruhigen Verlauf ge-

kennzeichnet. Das Profil fällt nach Auffüllungsphasen relativ

schnell trocken; in Austrocknungsphasen reagiert es nur sehr

schwach. In Auffüllungsphasen erreicht es mit maximal 27 cm

die höchsten Pegelstände der Profile im Lindengau. Diese Ei-
genschaften lassen sich eventuell aus der Lage im schmalen

Mulde ausgeprägten Oberlauf einer weiter unterhalb deutlich

ausgeprägten Rinne erklären. Die Stauwasserspitzen sind

schnell und das Profil fällt rasch trocken, weil in Richtung der

Rinne ein verstärkter Stauwasserzugg besteht. Während der Auffü-

llungsphase sammelt die Mulde das Wasser.

Baum

Die hier beschriebene 30jährige Douglastie stand einzeln vor-
herrschend in einem Fichtenstockenholz.

Wurzel

Das Wurzelwerk weist 9–10 mächtige Hauptseitenwurzel-

stränge (Höhe des ovalen Querschnitts am Ansatz ca. 25 cm)

auf, die mit ca. 36° schräg abwärts ziehen (Abbildung 10). In

Abbildung 10
etwa 40 cm Abstand vom Stock lösen sich die Hauptwurzelstränge in mehrere schräg abwärts gerichtete Großwurzelstränge (Durchmesser 8–12 cm) auf. An den Hauptwurzelsträngen und den Großwurzeln sitzen unten zahlreiche Sektor, die an der Sohle der Grube bei 60 cm Tiefe noch eine durchschnittliche Stärke von 1 cm haben. Der gesamte Wurzelraum unterhalb der Hauptseitenwurzelstränge ist von dichtem Feinwurzelwerk erfüllt, das teils direkt unten auf den Großwurzeln entspringt, teils in Büscheln am Ende von Mittelwurzeln sitzt.

Gesamteurteilung

Profil Nr. 7

Stauwassergang

In der Auffüllungsphase liegen die Spitzen dieser Körbe (Nr. 7 in Abbildung 18 b) mit maximal 42 cm relativ niedrig. Das Profil fällt relativ schnell trocken. Schmale, steile Stauwasserspitzen zu Beginn oder Ende der Austrocknungsphase können für kurze Zeit hohe Stauwasserspitzen (bis 31 cm unter Flur) ergeben.

Baum

Die hier beschriebene 30jährige Douglasie ist in mehrfacher Hinsicht mit dem unter Profil Nr. 6 beschriebenen gleichaltrigen Baum vergleichbar. Beide stocken in der Randzone von Mulden; Bodentyp und Stauwassergang sind vergleichbar. Beide standen einzig in einem Fichtenwäldchen, doch war die Douglasie von Profil Nr. 6 vorherrschend gegenüber nur mitbemessender bis herrschender Stellung bei Profil 7.

Wurzel

Gesamteurteilung

Das Wurzelwerk in Profil 7 ist offensichtlich der schlechteren nach hydrologischen Stellung im Bestand entsprechend deutlich schwacher ausgebildet als beim vergleichbaren Baum des Profilli 6. Das Wurzelsystem kann als schwach gestauchtes Herzsehenkzwurzelsystem bezeichnet werden. Die durchschnittliche Durchwurzelungsdichte beträgt ca. 60 cm, die Wurzeln dringen also noch deutlich in den dichten marmorierenden Horizont ein, in dem sie sich böslich auflösen. Die Feinwurzelnintensität ist von mittlerer Stärke.

Profil Nr. 8

Abbildung 12

Douglasie 30jährig auf Pseudogley

9–10 Hauptwurzelstränge

Abbildung 11

Douglasie 46-jährig auf Gley-Pseudogley

11 Hauptwurzelstränge

Abbildung 12
Stauwassergang

Der Stauwassergang (Kurve Nr. 8 in Abbildung 18 c) zeigt eine deutlich tiefer liegende Kurve als die beiden anderen im "Voggenreuter Holz" (Profile 9, 10). Der Maximalstand beträgt 17 cm, der längerfristige Höchststand (über 16 Tage) 25 cm.

Bau

Wurzel

Das Wurzelwerk ist in fast allen Merkmalen mit dem später beschriebenen Profile 10 vergleichbar (Abbildung 12). Allerdings ist die Wurzeldichte nicht ganz so hoch und sind Dichte (nur 11 Hauptwurzelwurzeln), Stärke und Länge der seitlichen Hauptwurzelstränge geringer, der weniger vorherrschende Stellung des Baumkerns entsprechend.

Profili 9

Waldort: Distrikt II (Voggenreuter Holz), Abteilung 2.
Wassergehalte: stauend bis feucht.
Standortseid: Übergang zwischen den Standortseiden "Humoser marnierter Lehme" und "Feuchter Lage"

Stauwassergang

Der Stauwassergang dieses Profiles (lange Naßphasen, Kurve Nr. 9 in Abbildung 18 c) ist mit Kurve 8 vergleichbar. In Auffüllungsphasen liegt die Kurve 9 etwas tiefer in Abtrocknungsphasen etwas höher. Der Unterschied entspricht der größeren Vorflutfähigkeit von Pegel Nr. 9. Kurzfristiger Maximal-Pegelstand ist 14 cm in der Auffüllungsphase wird längerfristig (12 Tage) 20 cm erreicht.

Bau

Die 35jährige Douglasie stand herrschend (jedoch nicht vorherrschend) in einem Fichten-Stangenholz auf mit Profile 10 vergleichbarem Standort.

Wurzel

Das Wurzelwerk dieses Baumes besteht aus 7 Hauptwurzelwurzelnsträngen, die mit 20-22 cm Durchmesser ansatzweise (Abbildung 13). Die Hauptwurzelwurzeln, die im Oberboden verbleiben, nehmen rasch an Stärke ab. In 60 cm Abstand von Stock haben sie jedoch einen Durchmesser von 15 cm, in etwa 1 m Abstand messen sie noch 10 cm. In 1 m Abstand lassen sie sich in mehrere Grobwurzeln auf. Von den Hauptwurzeln zweigen wenige Grob- und Mittelwurzeln ab, die horizontal verlaufen und sich abgelenkt auflösen. Die Tiefen wurzelschichtung reicht bis maximal 25 cm. Die Feinwurzelschichtung ist gering, es finden sich nur einzelne Feinwurzelbüschel am Ende von Mittelwurzeln.

Abbildung 13

Gesamtheilung

Die Wurzeldichte dieses Baumes ist relativ gering, die Zahl der Hauptwurzelwurzeln ist klein und ihre Stärke nimmt vom Stamm her geringen Abstand ab. Feinwurzeldichte und Tiefenwurzelechichtung ist gering, der Grund hierfür kann darin liegen, daß dieser Baum im Bestand nicht vorherrschender war.

Stauwassergang

Der Stauwassergang dieses Profiles (Abbildung 18 c, Pegel 12) zeigt die höchsten Stauwasserstände bis 6 cm unter Flur aller gemessenen Pegel. Die Stauwasserpegel halten hier relativ lang an. In der Auffüllungsphase im April 1983 stand das Stauwasser 15 Tage höher als 20 cm und 3-4 Tage höher als 10 cm. Der relativ ruhige Verlauf des Stauwasserganges, sowie der hohe Stauwasserspiegel lassen Grundwassernahen oder einen relativ großen Stauwasserzylinder, also gleitartige Verhältnisse, vermuten.

Bau

Die hier beschriebene Douglasie stand in einer Tannenkleingruppe innerhalb eines Fichten-Stangenholzes mit Forche, Tanne und etwas Buche. Sie war absolut vorherrschender und 50 Jahre alt.

Wurzel

Das Wurzelwerk ist sehr flach ausgebildet, aber mit einer hohen Wurzeldichte im Grobwurzel- und Feinwurzelnbereich ausgestattet (Abbildung 14-17). Die Hauptwurzelwurzelstränge liegen im obersten Bodenhorizont und reichen mit ihren Unterkante nicht tiefer als etwa 20 cm. Das Wurzelwerk besteht aus 12-14 sehr kräftig entwickelten Hauptsäulenwurzelsträngen, die im Ansatzpunkt bis zu 30 cm hoch und breitartig verstärkt sind. Grobwurzeln versuchen häufig nach unten vorzustellen, bevor aber dann rasch in den Horizontale um oder lösen sich bisweilen auf. Die Hauptwurzeln dringen vom Stock aus horizontal sehr weit vor. Sie lösen sich erst in 3-3,5 m Entfernung in mehrere Mittel- und Feinwurzeln auf. Der Wurzelbereich hat also einen Durchmesser von ca. 7 m.

Senker wie bei der Fichte, die auf vergleichbaren Standorten in der Regel zurückgefallen sind und deshalb der Verankerung nicht mehr dienen können, gibt es bei diesem Wurzelsystem nicht. Dieser Feinwurzelfilz ist am besten ausgeprägt in Stocknahe; im stockfernen Bereich sitzen die Feinwurzeln vorwiegend als Büschel am Ende von Schwachwurzeln, während nur wenige Feinwurzeln direkt an Grobwurzeln ansetzen. Die Hauptsensenwurzeln besitzen in Längsrichtung eine seitliche Einschnürung, so daß sie aussehen, als ob zwei Wurzeln in Längsrichtung zusammengewachsen. Der Querschnitt der Wurzeln, durch die Einschnürung in der Mitte haarnetzartig ausgeprägt, zeigt jedoch, daß es sich um eine sackartige Verstärkung der Wurzelstränge nach unten handelt. Der Wurzelquerschnitt besitzt nur einen Zentralzyllinder, der immer in der oberen Verdickung, also oberhalb der Einschnürung, liegt. Die Verstärkung der Hauptsensenwurzeln nach unten ist für Nadelbäume untypisch und läßt sich eventuell dadurch erklären, daß sie nicht durch eine normale Druckdoldenbildung (Stauchung der Wurzelebene) bzw. durch den fehlenden Gegenwurf auf der Bodenoberfläche zustande kommt, sondern durch den auf diesen Standorten typischen Feinwurzelfilz der Douglasie. Er überzieht die gesamte Unterseite der stocknahen Grobwurzeln und stimuliert dort möglicherweise das Dickenwachstum. Die Einschnürung ist bis in ca. 1,5 m Entfernung vom Stock deutlich erkennbar, zum Stock hin wird sie deutlicher.

Gesamtbeurteilung

Das Wurzelwerk dieses Baumes ist flach ausgebildet. Es kann als Extremform eines gestreckten Herzwurzelwerks angesehen werden. Ansatzweise sind die bei den anderen Profilen vorhandenen zwei Wurzelkranze zu beobachten, allerdings ist der untere Wurzelkranz mit dem oberen in eine Ebene gerückt. Als zweiter Wurzelkranz kann man die schwächeren Grobwurzeln...

3.2 Pegelmessungen

Einige Ergebnisse der Pegelmessungen wurden schon bei der Beschreibung der Wurzelpflege und einem der Unterschiede zwischen den verschiedenen in dieser Studie einbezogenen Varianten des Pseudogleys herausgegraben.

Für alle Pegelstellen gilt gleichermäßen, daß die Staunasserspiegel nach Niederschlägen binnen weniger Tage zu markanten Staunasserhöchstständen ansteigen. Das Staunasser vertieft sich im Verlauf von ein bis zwei Wochen wieder vollständig, ein Vorgang, der besonders deutlich bei Beginn der Austrocknungsphase zu beobachten ist.

In beiden Darstellungen zeichnen sich deutlich 3 Varianten des Pseudogleys - Pseudogleys mit langer Naßphase, Pseudogleys mit kurzer Naßphase und Parrbraunerde-Pseudogleys ab. In den Profilen kommen die Unterschiede der Staunasserhöhe vor morphologisch kaum zum Ausdruck. Nur der Parrbraunerde-Pseudogleys hebt sich deutlich ab.

Tabelle 2: Dauer von Staunassereinbrüchen in Tagen und höchste Pegelstände

<table>
<thead>
<tr>
<th>Profil Nr.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Pegel Nr.]</td>
<td></td>
</tr>
<tr>
<td>Rodentyp:</td>
<td>Pseudogley-</td>
<td>Parrbraunerde-</td>
<td>Pseudogley</td>
<td>Gley-Pseudogley</td>
<td>Gley-Pseudogley</td>
<td>Gley-Pseudogley</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staunassereinbruch (Tage)</td>
<td></td>
</tr>
<tr>
<td>< 15 cm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>< 20 cm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>< 30 cm</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>< 40 cm</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>< 50 cm</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>< 60 cm</td>
<td>-</td>
<td>6</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Höchster Pegelstand</td>
<td>cm u.f.</td>
<td>49</td>
<td>34</td>
<td>27</td>
<td>30</td>
<td>27</td>
<td>31</td>
<td>17</td>
<td>14</td>
<td>6</td>
</tr>
</tbody>
</table>

* nicht gemessen

Abbildung 17: Profil Nr. 10, Einschnittung und Verstärkung nach unten bei stocknahen Grobwurzeln, Feinwurzelfilz auf der Unterseite der Grobwurzeln.
Pseudogleyee mit langer Naßphase (Abbildungen 18 a, 18 c)

Die Gruppe der Pseudogleyee mit langer Naßphase ist gegenüber den anderen Gruppen dadurch gekennzeichnet, daß die Wasserstände bis zu 6 cm unter Flur am höchsten sind; daß die Stauwasserspiegel relativ breit sind und daß die Oberboden (oberhalb 40 cm) lange Stauphasen von weit mehr als 15 Tagen Dauer vorkommen.

Pseudogleyee mit kurzer Naßphase (Abbildungen 18 a, 18 b)

Diese Pseudogleyee unterscheiden sich dadurch, daß ihr mittlerer Stauwasserstand um zwischen 15 bis 40 cm tiefer liegt; daß die Stauwasserspiegel schmäler sind; daß die Oberboden nur von schmalen, wenige Tage dauernden Stauwasserspiegeln erreicht werden und daß die längsten Stauphasen von mehr als 15 Tagen erst in Tiefen zwischen 50 und 60 cm auftraten. Ansonsten gleicht der Verlauf des Stauwasserganges der Pseudogleyee mit Parabraunerde-Pseudogleye (Abbildungen 18 a, 18 b)

Die Übergangsform zur Parabraunerde ist nur mit einem Beispiel vertreten. Im ausgefüllten Zustand (Frühjahr 1983) liegt das Niveau des Stauwasserspiegels bei 60–70 cm, also um etwa 20 cm tiefer als bei Pseudogleyee mit kurzer Naßphase. Kürze Spitzen reichen nicht wesentlich höher als 50 cm. Auffallend ist, daß das Stauwasser in Wiederauffüllungsphasen gelegentlich höher ansteigt als in Pseudogleyee mit kurzer Naßphase.

3.3 Stauwassergang und Wurzelansprüche

Überblick

a) Pseudogleyee mit kurzer Naßphase und Parabraunerde-Pseudogleye

Die Tiefenmessung ist bis in Tiefen von mehr als 70 cm bei allen Profillen gut. Mittelwurzeln (Durchmesser < 2 cm) stoßen oft in den marionierten Bereich vor. Überall wurden bis in 70–80 cm Tiefe zahlreiche Wurzeln dieser Wurzelklasse gefunden, wenn der betrachtete Baum der herrschenden oder vorherrschenden Baumklasse angehörte. Aus dem Vergleich mit Tabelle 2 und den Stauwassergängen der Abbildung 18 b folgt, daß diese tiefgreifenden Wurzeln die Übersäuerung mit freiem Stauwasserräder längere als 20 Tage offensichtlich unbeschadet überleben, abgefaßte oder kranke Wurzeln nicht gefunden wurden.

Das Wurzelsystem der Paraabraunerde-Pseudogleye ist mit der Verhältnisse der Pseudogleye mit kurzer Naßphase vergleichbar.

Die Stauwassergänge zeigen im aufgefüllten Zustand (Frühjahr 1983) eine sehr gute Übereinstimmung; bei beginnender Abtrocknung divergieren sie stark. Daß die durch die Wurzeln der Douglasie bewirkten Wurzelstränge auffallen, ist deutlich übertragen durch mittelbare Einbauten, die eine abflussfordernde Situation schaffen. Der Stauwassergang des Paraabraunerde-Pseudogleye-Profils ist unruhiger und verläuft bis auf die Wiederauffüllungsdauern tiefer als bei den Pseudogleyee.

b) Pseudogleyee mit langer Naßphase

3.4 Zusätzliche Beobachtungen

a) Bestandessoziologische Stellung

Die bestandessoziologische Stellung hat offensichtlich auf die Ausprägung des Wurzelwerks bei der Douglasie einen entscheidenden Einfluß. Die niederstehenden und unteren Wurzelsoziologischen Baumbereiche bleiben in der Ausdifferenzierung eigene Wurzelwerke zurück. Der Vergleich zwischen den Profilen 3 und 4 nahelegt. Sie bieten offensichtlich weniger Hauptsitzwurzelstränge aus, die Wurzeln bleiben schwächer, streichen nicht so weit wie bei vorherrschenden Bäumen und die Tieferansiedlung ist gering. Soweit die mechanische Wurzelenergie als die Feinwurzelintensität abgeschwächt (Profile 4, 7, 8, 9). Die Abhängigkeit der
Wurzelentwicklung von der bestandessoziologischen Stellung wurde mehrfach (Göhre 1938, Köster et al. 1968) beobachtet.

b) Wirkung einer kiesig-tonigen Untertons verdichtung

Das Profil Nr. 1 (Distrikt VII, Abteilung 7) weist in 45 cm Tiefe einen dicht gepackten kiesig-tonigen Horizon auf, der, wie die Pergesslingen zeigen, keine aktuelle Stauwirkung auf das Bodenwasser ansagt, aber offensichtlich ein mechanisches Wurzelhindernis für die Douglasie darstellt, ähnlich wie dies bei der Fichte auf vergleichbaren Standorten beobachtet wurde (Abbildungen 19 und 20).

Die Hauptrzurze sind relativ schwach dimensioniert, knotig und knotten und lösen sich relativ bald in den verdichteten Horizon auf. Da sich diese Beobachtung nur auf ein Wurzelprofil stützt, kann sie nicht verallgemeinert werden. Bemerkenswert ist allerdings, daß auf dieser Standortvariante die bei weitem schwächste Wurzelentwicklung gefunden wurde, obwohl sie am besten üblichen Vorstellungen geeigneter Douglasienstandorte nahekommt.

4. Diskussion und Schlussfolgerung

Weitere Gründe für die Differenzierung der Pseudogley können im bodenbildenden Substrat gesucht werden. Unter der oft sehr flach ausgebildeten und durch Erosionen verdichteten rillenzeitlichen Grundmoräne liegen teilweise relativ dichte feste Tone. Endmoränenabd egen sind die Substrate in der Regel grob strukturiert und enthalten einen hohen Sand- und Feinkiesanteil. Alle Beispiele Pseudogley mit kurzer Naßphase stammen aus der näheren oder weiteren Umgebung der Endmoräne, wo offensichtlich eine beweg-
Hilfe zur Erkennung von Pseudogleyen mit kurzer Naßphase sein, denn die Profillmorphologie liefert nur ungenügende Kriterien für die Grenzziehung zwischen den beiden Pseudogley-Varianten. Von einer klaren Grenze zwischen Pseudogleyen mit kurzer und langer Naßphase wird aber die Anbaugepflichkeit für die Douglassie abhängen.

Danksagung

5. Zusammenfassung

SUMMARY

Title: Root development of Douglas-fir on pseudeagy soils in northern Upper Saxonia.

The structure of root systems of 10 Douglas-fir trees was examined on pseudeagy soils. Water levels were measured in water gauges. Two distinctly different types of pseudeagy soils were found, as evidenced both by the perched water table in the upper soil horizons and the structure of the root systems.

In pseudeagy soils with a long wet period (Gley-Pseudogley to Pseudogley-Gley) the perched water table reached a maximum of 6 cm below the surface. The Douglas-fir root system was flat and had a maximum depth of 35 cm on this soil type.

Pseudeagy soils with a short wet phase (Parabraunerde to Parabraunerde-Pseudeagy) showed only very short periods with stagnant soil moisture, immersing only part of the upper soil horizons (above 30 cm). Douglas-fir formed an undisturbed and deep perennial root system.

The mechanical root energy and the fine rooting intensity were high in both soil types.

Anschriift des Verfassers: Klaus von Wilpert, Insitute für Waldbau der Universität Freiburg, Berulakter Straße 17, 7800 Freiburg i. Br.