Untersuchungen über die Einflüsse des Standorts und der Bestandesverhältnisse auf die Rotfäule (Kernfäule) in Fichtenbeständen der Ostalb

von Hans Werner
mit ambulanten Auswertungen von F. H. Evers (Abbild. H. 5)

(aus der Baden-Württembergischen Forstlichen Versuchs- und Forshungsaustalt, Abteilung Botanik und Standortsunde)

A Problemstellung und Untersuchungsmethode

Wie in der Mittleren Alb (Werner 1971) führt auch auf der Ostalb die Rotfäule zu chronischen Schäden der Holzerneuerung, die eine häufig nicht erkennbare schleichende Holzentwicklung bewirken. Bereits Illinger (1951) wies auf den unterschiedlichen Befall auf den einzelnen Standorten hin. Da nur die eigentliche Kernfäule (Kernholz von der Wurzel her ausbreitende Fäule) eine direkte Standortabhängigkeit zeigten dürfte, beschränkte sich die vorliegende Untersuchung vorwiegend auf diese Fäuleerscheinungen, „Wundfäulen“, verursacht durch Falt- und Rückenschäden, also sichtbare Verletzungen von Stamm und Wurzeln, sollen nur summarisch abgehandelt werden.

Kernfäulen werden auch auf der Ostalb vorwiegend von Fomes annosus (Fr.) Cooke verursacht, doch spielen, wie die Untersuchungen Schönhals an mehreren hundert Stamm- scheiben zeigen, auch Armillaria mellea Kumm. und Odontia bicolor eine Rolle.

Abb. 2
Untersuchungsgebiet „Ostalb“
Zur Prüfung der Abhängigkeit des Kernlehmbedarfes vom Standort, vom Bestandsalter und dem Bodenverhältnis wurden in 8 Forstbezirken der Ostalb statistische Erhebungen in Fichtenbeständen durchgeführt, die zur Durchschnittsermittlung oder Endnutzung heranstanden.

Zur Vergleichbarkeit der Ergebnisse wurde auf der Ostalb dieselbe Untersuchungsmethode angewandt, wie die früher für die Mittlere Alb eingehend beschrieben wurde (Weiner 1971).

Ab Herbst 1970 wurden auf sämtlichen Flächen etwa 10 Stammachse von kryptaften Fichten entnommen und Herrn Dr. Schönhar zur Verteilung auf die Forstbezirke der Karlsruher Forstwirtschaft übergeben. Die Ergebnisse sind im Anhang zusammengefasst; außerdem werden sie im Abschn. 3 summarisch mitgeteilt.

Für die Überlassung der Untersuchungsergebnisse danke ich den Herren ORD. Dr. Evers und ORD. Dr. Schönhar besonders herzlich.

B Das Untersuchungsgebiet und die untersuchten Standorteinheiten

Eine kurze Charakteristik der Schwäbischen Alb findet sich in der früheren Veröffentlichung über Untersuchungsergebnisse in der Mittleren Alb (Weiner 1971).

Regionale Gliederung der Ostalb

In 8 Standorteinheiten, die auf der Höhenfläche der Nördlichen Ostalb etwa 94% des Staatswaldes einnehmen, wurden Fichtenbestände 1. bis 3. Generation nach Laubholz,

| Tabelle 1 |

<table>
<thead>
<tr>
<th>Standorteinheiten</th>
<th>Flächenanteil</th>
<th>Untersuchungsfäche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sommerberg</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td>Mittelstadt</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>Schlißteln</td>
<td>28</td>
<td>12</td>
</tr>
<tr>
<td>Schloßflachs</td>
<td>29</td>
<td>20</td>
</tr>
<tr>
<td>alt. geologische Lage</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>neuere geologische Lage</td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td>Hornbach-Schuchtlten</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>Schloßflachs</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Uche-Stuttgarter-Typ</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>Myrtillus-Schweizer-Typ</td>
<td>15</td>
<td>12</td>
</tr>
</tbody>
</table>

28
Fichtenbestände aus Erstaufforstungen und Fichten/Buchen/ Mischbestände auf ihr Rotfahverhalten untersucht. Selbstverständlich weist die Standortsgliederung noch zahlreiche andere Standortseinschichten auf, doch handelt es sich hierbei entweder um Standorte des Abteilungs- oder um Splitter- einschichten, die aus anderen Gründen für die Fichte nicht in Frage kommen.

Bei den Untersuchungen wurde stets versucht, die Flächen so auf die Standortseinschichten zu verteilen, daß diese zu einem derartig gleichmäßig verteilte repräsentiert sind (Tab. 1). Insgesamt wurden 187 Flächen mit etwa 10.000 Stämmen aufgenommen. Lediglich wenige Flächen mußten nachträglich von der Auswahl ausgeschlossen werden, da es sich offensichtlich um vom Wind vorsortierte Bestände handelte.

Untersuchte Standortseinschichten

1. Elymus-Buchenwald auf flachgründigem Kalkverwitterungslehm (KVL)
 - Mäßig trockene bis trockene Erosionslagen der Albhochfläche.
 - Euphorbia amygdauloides, Elymus, Milium-Gruppe.
 - Mull bis Moder; flachgründige Terra fusca bis Mullrendina aus 20 cm tiefgem Kalkverwitterungslehm.

2. Elymus-Buchenwald auf mittelgründigem Kalkverwitterungslehm (KVL)
 - Mäßig frische bis mäßig trockene, mehr oder weniger ebene Lagen der Albhochfläche.
 - Elymus, Asarum, Milium-Gruppe.
 - Mull bis Mollmoder; Terra fusca aus 20—40 cm (in Spalten oft tiefer reichend) meist steinigem Kalkverwitterungslehm; teilweise mit dünlem Schlufflehmischler.

3. Buchenwald auf Schichtlehm (SL)
 - Mäßig frische Ebenen bis schwach geneigte Lagen.
 - Milium-(Carex brizoides, Luzula nem.-)Gruppe.
 - Mull bis Mollmoder; Parabraunerde aus 25—60 cm Feinlehm oder Feuersteinschlufflehm über Kalkverwitterungslehm.

4. Halmenmähnchenwald auf Schichtlehm (FSL)
 - Mäßig frische Ebenen und schwach geneigte Lagen.
 - Luzula nemorosa-, Carex brizoides-, Milium-Gruppe.
 - Moder bis Mollmoder; podsolige Braunerde aus 25 bis 60 cm Feuersteinschlufflehm über Kalkverwitterungslehm.

5. Hahnenamenmähnchenwald auf Schlufflehm (FSchL)
 - Mäßig frische Ebenen, meist fern der Hangkante.
 - Luzula nemorosa-, Milium-, Carex brizoides-, modere podsolige Braunerde aus tiefgründigem Schlufflehm mit starkes westweisendem Feuersteinlehm.

6. Frische Mulden und Flachsenken (FMu)
 - Frische Mulden und flache Senken der Albhochfläche.
 - Podsoliger Braunerde.
 - Mull: Parabraunerde aus tiefgründigem, humösem, meist feuerversteinem Mischlehm.

7. Orchis-Myrtillus-Typ auf Feuerstein-Schlufflehm (OOSM)
 - Mäßig frische Ebenen und Flachlagen der Hochfläche.
 - Luzula nemorosa-, Milium-, Vaccinium myrtillus-(Entodon Schreberi-)Gruppe.
 - Moder bis Rohhumus; podsolige Braunerde aus tiefgründigem, meist feuerversteinem Schlufflehm.

8. Myrtillus-Schreberi-Typ auf Feuerstein-Schlufflehm (MSM)
 - Mäßig frische, kleinflächig vernässte Ebenen und Flachlagen der Hochfläche.
 - Vaccinium myrtillus, Entodon Schreberi, Luzula nemorosa-Gruppe.
 - Rohhumus: podsolige Braunerde bis Podsole aus tiefgründigem stark feuerversteinem Schlufflehm.

In einer früheren ertragsskundlichen Untersuchung konnte Moosnayer (1957) für die einzelnen Standortseinschichten folgende Fichtenleistungen ermitteln:

Standortseinschicht	mittlerer dGz 100
1. mittelgründiger KVL | 12.9 (11.4—14.5)
2. mittelgründiger KVL | 13.9 (12.3—15.6)
3. Schichtlehm und Hainbüschen | 15.5 (13.8—17.3)
4. buchenwald auf Schichtlehm | 16.5 (14.8—18.2)
5. Hainbüschenbuchenwald auf Schlufflehm | 12.7 (10.9—14.7)
6. Frische Mulden | 12.5 (11.0—14.1)
7. Orchis-Myrtillus-Typ | 16.5 (14.8—18.2)
8. Myrtillus-Schreberi-Typ | 12.7 (10.9—14.7)

C. Kernfäulebefall auf Kalkverwitterungslehm

1. Flachgründiger Kalkverwitterungslehm

Diese für die Fichte wenig geeignete Standortseinschicht nimmt im Staatswald der „Nördlichen Ostalb“ laut Standortskarte 10,5 % der Fläche ein. Bereits Mosnayer (1971) hat jedoch darauf hingewiesen, daß bei den ersten Karteierungen dieser Standortseinschicht Flächen zugewiesen wurden, die heute der mittelgründigen Einheit angehören würden. Oberschlägt sich also annehmen, daß der flachgründige Kalkverwitterungslehm nur etwa 5 % der Staatswaldfläche einnimmt.

Der geringmäßig Kalkverwitterungslehme und der verarbeitete Unsergrund bewirken einen Wasserhaushalt, der nach Mosnayer nur eine bescheidene Fichtenleistung mit einem mittleren dGz 100 von 10,5 Vfmp zuläßt.

Kernfäule-Stammszahlprozente

In Abb. 2 sind die Kernfäule-Stammszahlprozente — getrennt nach 1. und 2. Generation nach Laubholz sowie Mischbeständen — über dem Alter aufgezeichnet. Die gemittelte Werte sind nicht durch eine Kurve zu erfassen, da die Veränderungen der Methode von Jahr zu Jahr betrachtlich sind. Der mittlere Fehler beträgt 2,50 %6 oder, bezogen auf den Mittelwert 4,9 %5 ist auffallend gering.

Die beiden Bestände 2. Generation Fichte nach Laubholz liegen beide über der Ausleibscurve, doch läßt sich daraus selbstverständlich nicht die Konsequenz ableiten, die wir in der Tat ebenfalls beobachtet haben.

Die beiden Mischbestände täten sich in das Strepbad ein, wobei auch der Bestand Nr. 181 mit 6/10 Buche keine eindeutige Dämpfung der Kernfäule erkennen läßt.

flachgründiger Kalkverwitterungslehm Alter Wald

Abb. 2

% Kernfäule-Stammzahl

- 1. Generation Fichte nach Laubholz
- 2. Mischbestand

\[\delta_K = \pm 9.00\% \]
\[\mu_K = \pm 2.40\% \]
\[r = 0.670 \]

Alter

Jahre

flachgründiger Kalkverwitterungslehm Alter Wald

Abb. 3

% Netto-Wertverlust

- 1. Generation Fichte nach Laubholz
- 2. Mischbestand

\[\delta_K = \pm 3.65\% \]
\[\mu_K = \pm 0.97\% \]
\[r = 0.533 \]

Alter

Jahre
Netto-Wertverlustprozente

Auch die Netto-Wertverlustprozente, über dem Alter aufgetragen (Abb. 3), ergeben ein Streuband, das sich nur mit Milch durch eine Kurve ausgleichen läßt und einen wenig strefften Zusammenhang (r = 0,533) aufweist. Da der Wertverlust nicht nur vom Stammzahlprozent sondern auch vom Betallapilz und damit der Zersetzungsgrad der Flächenhöhe bestimmt wird, kann der Zusammenhang nicht streffen werden. Mcshbestände und zweite Generationen Fichte nach Laubholz ordnen sich ohne Besonderheiten in das Streuband ein.

2. Mittelgründlicher Kalkverwitterungslern

Wie auf der Mitte der Alb zeigen auch auf der Ostalb Erstaufforstungen wesentlich höhere Kornfäulehäden als Bestände auf altem Waldgebiet. Die Auswertung wurde daher wieder getrennt vorgenommen.

a) Bestände auf altem Waldgebiet

Der Altersrahmen der 3570 Bestände beträgt 20—263 Jahre, daraus errechnet sich ein Durchschnittsalter von 72 Jahren.

Kornfäule-Stammzahlprozente

In Abb. 4 wurden getrennt nach Generationen und Mischbeständen die Kornfäule-Stammzahlprozente über dem Alter aufgetragen. Sie ergeben ein Streuband, das sich leicht durch eine Kurve ausgleichen läßt und einen Korrelationskoeffizienten von 0,737 aufweist. Der Korrelationskoeffizient sowie der mittlere Fehler (±1,96 %, oder 6,9 % bezogen auf den Mittelwert) ließen sich wesentlich verbessern, wenn die Bestände Nr. 83, 93 und 176 unberücksichtigt blieben. Eine eingehende Standort- und Bestandesanalyse ergab jedoch keine Hinweise, die eine Ausweitung rechtfergen könnten.

Die Mischbestände liegen zwar mit ihren Kornfäule-Stammzahlprozente mit einer Ausnahme unter der Ausgleichskurve, doch zeigt selbst ein Buchenanteil von 7/10 (Nr. 73) bzw. 8/10 (Nr. 178) keine deutliche Abweichung der Kornfäule-Stammzahlprozente.

Netto-Wertverlustprozente

In Abb. 5 zeigt die Netz-Wertverlustprozente über dem Alter aufgetragen. Der Zusammenhang ist wenig streff (r = 0,292) und bereitete einige Schwierigkeiten, eine befriedigende Ausgleichskurve zu ziehen. Hingegen der Bestände zweiter Generation und der Mischbestände ergibt sich ungefähre dieselbe Situation wie bei den Stammzahlprozente.

Daß die beiden Mischbestände Nr. 155 mit 4/10 Buche und Nr. 173 mit 2/10 Buche ihre Position zur Ausgleichskurve weitgehend haben, zeigt, daß hier — vom Laubholzanteil unabhängige — verschiedene Zersetzungsvorgänge herrschen müssen.

b) Fichtenbestände nach Erstaufforstung

Kernfäule-Stammzahlprozente

Trägt man die Kernfäule-Stammzahlprozente dieser Flächen auf das Alter auf, so zeigt sich in Abb. 6 eine eindeutige Gruppierung. Obwohl einige der Erstaufforstungen nach Acker mit ihren Kernfäule-Stammzahlprozente eindeutig über denen der Flächenbestände nach altem Wald liegen, zeigen Erstaufforstungen nach Weide bei gleichen Altersdurchschnittswerten etwa 12,9% höhere Kernfäule-Stammzahlprozente als Erstaufforstungen nach Acker.

Die wenigen Werte der Erstaufforstungen erlauben keine rechnerische Berechnung; die scheinbar funktionale Zusammenhang kann rein zufällig sein.

Netto-Wertverlustprozente

In Abb. 7 (Netto-Wertverlustprozente über dem Alter) ergibt sich ein ähnliches Bild. Auch hier liegen die Erstaufforstungen eindeutig über den Erstaufforstungen und erreichen im Alter 80 nahezu 30% Wertverlust. Daß die Werte bis zum Alter 60 weniger differieren, läßt sich vielleicht dadurch erklären, daß die Flächen in der Erstaufforstung erst einmalisiert und eine gewisse Virulenz der Holzerneuerung erreicht werden konnte.

mittelgründiger Kalkverwitterungslehmb Alte Wald

Abb. 4

Kernfäule-Stammzahl

- 1. Generation Fichte nach Laubholz
- 2. III II II II
- 3. II II II II
- M Mischbestand

\[\sigma_K = \pm 9.25\% \]
\[\mu_K = \pm 1.59\% \]
\[r = 0.707 \]

Abb. 5

Netto-Wertverlust

- 1. Generation Fichte nach Laubholz
- 2. III II II II
- 3. II II II II
- M Mischbestand

\[\sigma_K = \pm 3.94\% \]
\[\mu_K = \pm 0.69\% \]
\[r = 0.292 \]
mittlergründiger Kalkverwitterungslehm Erstaufforstung

% Kernfäule-Stammzahl

- nach Weide
- nach Acker

- nach Weide
 $\delta_K = \pm 12.16\%$
 $\mu_K = \pm 4.94\%$
 $r = \pm 0.588\%$

- nach Acker
 $r = 0.997$

Alter
Jahre

mittlergründiger Kalkverwitterungslehm Erstaufforstung

% Netto-Wertverlust

- nach Weide
- nach Acker

- nach Weide
 $\delta_K = \pm 5.23\%$
 $\mu_K = \pm 1.97\%$
 $r = \pm 0.478$

- nach Acker
 $\delta_K = \pm 2.71\%$
 $\mu_K = \pm 1.36\%$
 $r = 0.990$

Alter
Jahre
D. Kernfäulebefall auf pleistozeitlichen Lehmen
(Schichtlehmen, Schlufflehmen und Feuersteinlehmen)

In dieser Gruppe fassen wir die im Abschnitt B unter Nr. 3 bis Nr. 8 beschriebenen Standortseinheiten zusammen. Auf diesen Einheiten wird der im Untergeschiebe lag ernde Kalkverwitterungsboden – wie in der Mittleren Alb – von einem wechselnd mächtigen tonärmern Oberboden überlagert.

Auf Schichtlehmen, Schlufflehmen und in frischen Mulden und Flachserben ist infolge langandauernder Tonverwitterung im Oberboden eine Bodenart ähnlich dem Löß
lehm entstanden, deren Mächtigkeit bei Schichtlehmen 20 bis 60 cm, bei Schlufflehmen über 60 cm beträgt. In den frischen Mulden sind durch kolluviale Vorgänge mehr tiefgründige Mischlehme entstanden.

Auf großen Flächen der Ostalb finden sich Restschut
decke in denen sich Feuersteine als unlosliche Gesteinsrück
stande in wechselnden Anteil auffällig äußern. Das Fein-
material dieser Boden unterlag länger der Tonschüttelung
nung, ist daher flüchtiger als die Feinlehme und wird von
uns als Schlufflehm bezeichnet.

Bei der Kartierung wurden Feuersteinschlufflehme erst bei stärkerer Versauerung in den Standortseinheiten „Oxalis
Myrtillus-Typ auf Feuerstein-Schlufflehm“ und „Myrtillus-Streberi-Typ auf Feuersteinschlufflehm“ ausgeschieden. In
den Standortseinheiten „Hainsimsenbuchenwald auf Schicht
lehmen“ und „Hainsimsenbuchenwald auf Schlufflehm“ wurde ein höherer Feuersteingehalt lediglich durch Zusatzzeichen markiert. Die Ausscheidung dieser Einheiten erfolgte vorwiegend aufgrund der Bodenfläche, die eine mäßige Ober
bodenverwitterung anzeigt, wobei diese jedoch einmal durch einen höheren Feuersteingehalt, zum anderen aber auch durch menschliche Devastationen auf feuersteinfreien Fein
lehmen bedingt sein kann.

Bei unseren Kernfäule-Untersuchungen zeigte sich nun bald, daß nicht die Oberbodenverwitterung, sondern der Feuersteingehalt im Boden über die Kernfäuleaussaat einen Bestandes entscheidet. Die Untersuchungsfelder auf den Standortseinheiten „Hainsimsenbuchenwald auf Schicht
lehmen“ und „Hainsimsenbuchenwald auf Schlufflehm“ wurden daher unabhängig von der Oberbodenversauerung alle
nen nach dem Feuersteingehalt verschiedener Befallsberei
hen zugeordnet, wobei ein Feuersteingehalt von etwa 30 % die Grenze bildete.

Im folgenden werden die 6 Standortseinheiten Nr. 3 bis Nr. 8 nach Wasserkapazität und Feuersteingehalt in 3 Befallsbereiche eingeteilt:

1. Mäßig frische pleistozeitliche Lehme
 (feuersteinarme Flächen der Standortseinheiten Nr. 3,
 Nr. 4 and Nr. 5)

2. Frische pleistozeitliche Lehme
 (Standortseinheit Nr. 6)

3. Feuersteinlehme
 (feuersteinreiche Flächen der Standortseinheiten Nr. 3,
 Nr. 4 and Nr. 5 sowie Standortseinheiten Nr. 7 und Nr. 8)

Die logisch erscheinende und ursprünglich durchgeführte Trennung der Befallsgruppe 3 in mäßig saure (Töle von Nr. 3, Nr. 4 and Nr. 5) und saure (Nr. 7 and Nr. 8) Feuersteinlehme erwies sich als nicht notwendig.

I. Mäßig frische pleistozeitliche Lehme

Hier wurden die feuersteinarmen Flächen der Standortseinheiten „Buchenwald auf Schichtlehmen“, „Hainsimsenbuchenwald auf Schichtlehmen“ und „Hainsimsenbuchenwald auf Schlufflehm“ zusammengefaßt. Die Flächen wurden nur noch nach der Mächtigkeit der feuersteinarmen Schlufflehm-
ausläufe differenziert und als Schichtlehmn (20–60 cm) und Schlufflehm (über 60 cm) bezeichnet.

Von den insgesamt 55 untersuchten Beständen (Abb. 9
und 10) stocken 36 auf Schichtlehmen und 19 auf Schlufflehm.

Auf den Schichtlehmen weisen 7 Bestände die zweite und 2 die dritte Fichtengeneration nach Laubholz
auf. 7 Bestände haben einen Buchenanteil zwischen 1 und
7 Zehnteln; 1 Bestand hat eine Beimischung von 3 Zehnteln Tanne. 5 Bestände sind aus Erstauflösungen nach Ackerherrschaften abgeschnitten. Von den 19 Beständen auf Schlußfehlen weisen 4 die zweite und 4 die dritte Generation Fichte nach Laubbholz auf. Ein Mischbestand konnte auf dieser Einheit nicht untersucht werden. Dagegen konnte auch hier ein Fichtenbestand aus Erstauflösung nach Acker in die Untersuchung einbezogen werden.

Da die Wertezahl der Erstauflösungsbestände für eine getrennte Auswertung zu gering war und sich außerdem die Werte gut in das Streuband einordnen, konnte vorläufig auf eine getrennte Auswertung verzichtet werden.

Für sämtliche Flächen ergab sich ein rechnerisch durchschnittsalter von 74 Jahren (Schlußlehn = 78; Schlußlehn = 67).

Kernfäule-Stammzahlprozente

Darauf soll später beim Vergleich zwischen Mittlerer Alb und Ostalb noch näher eingegangen werden.

Die Akkerauflösungen auf Schlußlehn lassen sich ohne Schwierigkeiten in das Streuband einordnen; dagegen liegt die Erstauflösung auf Schlußlehn immerhin an der Obergrenze des Streubandes. Wie bereits gesagt, ist jedoch die Wertezahl zu gering, um schlüssige Aussagen machen zu können. Andererseits ist das Kernfäule-Stammzahl-Niveau auf dieser Befallsseinheit der Ostalb fast 20% höher als in der Mittleren Alb, so daß Akkerauflösungen sich dahinter zwanglos in die Befallsseinheit einordnen können.

Netto-Wertverlustprozente

Die Kurve der Netto-Wertverlustprozente dieser Flächen über dem Alter (Abb. 10) zeigt nur einen wenig straffen Zusammenhang. Neben einem geringen Korrelationskoeffizienten von 0,494 beträgt der mittlere Fehler, bezogen auf den Mittelwert der Kurve, immerhin 6,91%.

Die beiden Bestände ordnen sich auch hier — mit einer Ausnahme — gut in das Streuband ein. Der hohe Wertverlust des Bestandes Nr. 189, der im Stammzahlprozent durchaus im Rahmen liegt, ist sicher auf die unerklärlich hohe Fäulnisdichte von 5,1 m zurückzuführen, wovon allen 1,5 m je geschädigter Stamm unverwerthbar war.

Die Erstauflösungen liegen durchweg an der Obergrenze des Streubandes.

2. Frische pleistozeane Lehme

Kernfäule-Stammzahlprozent

Trägt man die Kernfäule-Stammzahlprozente dieser Flächen über dem Alter auf, so zeigt Abb. 11 ein Streuband, das leicht durch eine Kurve ausgeglichen werden kann. Der Zusammenhang ist mit $r = 0,814$ recht sauber; der mittlere Fehler der Kurve, bezogen auf den Mittelwert, beträgt 3,74%.

Die beiden Bestände zweiter Generation sowie der Mischbestand ordnen sich gut in das Streuband ein, was bei der geringen Wertezahl allerdings geringen Aussagewert hat.

Netto-Wertverlustprozente

Die Netto-Wertverlustprozente über dem Alter aufgetragen (Abb. 12) zeigen nur einen lockeren Zusammenhang und ergeben große Streuungen um die geradlinig gezogene Ausgleichskurve. Der mittlere Fehler, bezogen auf den Mittelwert der Kurve, beträgt 13,2%. Auch in diesen lockeren Zusammenhang ordnen sich sowohl die Bestände zweiter Generation als auch der Mischbestand sehr gut ein.

3. Feuersteinlehme

Wie bereits gesagt, wurden in dieser Befallsseinheit feuersteinreiche Flächen der Standortseinheiten Nr. 3 „Buchenwald auf Schichtlehn“, Nr. 4 „Hainsimschenkchenwald auf Schichtlehn“, Nr. 5 „Hainsimschenkchenwald auf Schlußlehn“, sowie die Stämme der Myrtillus-Typ auf Feuerstein-Schlußlehn“ und Nr. 8 „Myrtillus-Schreberg-Typ auf Feuerstein-Schlußlehn“ zusammengefaßt. Die logisch erscheinende und ursprünglich durchgeführte Trennung in 6 (Teile von Nr. 3, Nr. 4 und Nr. 5) und saure (Nr. 7 und Nr. 8) Feuersteinlehme erbrachte mindemessig im Hinblick auf Kernfäule-Stammzahlprozenten und Netto-Wertverlustkurven keine besseren Ergebnisse.

Von den insgesamt 66 untersuchten Flächen (Abb. 13 und 14) rechnen 15 auf Feuerstein-Schlußlehn, 20 auf Feuerstein-Schlußlehn, 16 auf Oxalis-Myrtillus-Typ auf Feuerstein-Schlußlehn und 15 auf Myrtillus-Schreberg-Typ auf Feuerstein-Schlußlehn. Der Altersschnitt beträgt zwischen 20 und 117 Jahren; das rechnerische Durchschnittsalters, das auf den verschiedenen Standorten variieren kann, lag zwischen 73 und 77 Jahren schwankend, beträgt 75 Jahre.

frische pleistozäne Lehme

Kernfäule-Stammzahl

- 1. Generation Fichte nach Laubholz
- 2.
- M Mischwald

\[\delta_K = \pm 6.45\% \]
\[\mu_K = \pm 2.28\% \]
\[r = 0.814 \]

Alter

frische pleistozäne Lehme

Netto-Wertverlust

- 1. Generation Fichte nach Laubholz
- 2.
- M Mischwald

\[\delta_K = \pm 4.18\% \]
\[\mu_K = \pm 1.48\% \]
\[r = 0.544 \]

Alter
Abb. 13

Feuerstein-Lehme

1. Generation Fichte nach Laubholz
2. " " " "
3. " " " "
Mischbestand

\[\delta_k = \pm 8.39\% \]
\[\lambda_k = \pm 1.03\% \]
\[r = 0.460 \]

Abb. 14

Feuerstein-Lehme

1. Generation Fichte nach Laubholz
2. " " " "
3. " " " "
Mischbestand

\[\delta_k = \pm 2.45\% \]
\[\lambda_k = \pm 0.89\% \]
\[r = 0.410 \]
Im Bereich des Oxalis-Myrtillus-Types auf Feuerstein-Schlufließen weisen 4 der 16 Flächen die zweite Generation Fichte nach Laubholz auf. Ein Bestand hat einen Mischungsanteil von 4 Zehnteln Buche. 8 der Bestände wurden 1965 bis 1970 gedüngt.

Im Bereich des Myrtillus-Schreberi-Types auf Feuerstein-Schlufließen weisen 2 der untersuchten Bestände die zweite und einer die dritte Generation Fichte nach Laubholz auf. Ein Bestand hat eine Beimischung von 1 Zehntel Buche. 8 der Bestände wurden (vorwiegend schon in den 50er Jahren) gedüngt.

Auff die Düngung und deren Einfluß auf die Kernfäule-Schäden soll später noch näher eingegangen werden; in den gegenständlichen Darstellungen werden die Werte der gedüngten Flächen unterstrichen.

Kernfäule-Stammzahlprozent

Trägt man die Kernfäule-Stammzahlprozente dieser Flächen getrennt nach Standorts- und Bestandesverhältnissen über dem Alter auf, so ergibt sich ein breites Streubreit (Abb. 13), das nur mit Schwierigkeiten durch eine Kurve ausgeschrieben werden kann. Der Zusammenhang ist — wie der Korrelationskoefizient von 0,460 beweist — nur recht locker und der mittlere Fehler beträgt, bezogen auf den Mittelwert der Kurve, immerhin 6,4 %. Durch Aufteilung in mäßig saure und saure Feuersteinlehme ließe sich zwar der Korrelationskoefizient sowie die mittlere Streuung der mäßig sauren Feuersteinlehme etwas verbessern, dafür würden die Werte für die sauren Feuersteinlehme wesentlich verschlechtern (r = 0,383; u = 1,80 %).

Die Mischbestände ordnen sich gut in das Streubreit ein; selbst ein Mischungsanteil von 4 Zehnteln Buche vermag keine eindeutige Dämpfung des Stammzahlprozentes.

Netto-Wertverlustprozente

In Abb. 14 sind die Netto-Wertverlustprozente dieser Flächen über dem Alter aufgetragen. Auch hier ergibt sich ein breites Streubreit, das sich ab Alter 40 am ehesten durch eine Gerade ausgleichen läßt. Der Korrelationskoefizient von 0,415 zeigt den geringen Zusammenhang; der mittlere Fehler von 12,1 %, bezogen auf den Mittelwert, ist groß.

Ein Zusammenhang mit den Standorts- und Bestandesverhältnissen läßt sich auch hier nicht feststellen; selbst die zweiten Generationen zeigen nicht die deutlich höheren Wertverlustprozente, wie sie von der Stammzahlprozententwicklung her zu erwarten wären.

E Gesamtbetrachtung Stammzahlprozent und Wertverlust

Kernfäule-Stammzahlprozentkurven

In Abb. 15 sind die Kernfäule-Stammzahlprozentkurven der 3 aus den 8 Standortseinheiten resultierenden Befallseinheiten auf allen Waldflächen aufgesetzt. Auf 3 Befallseinheiten konnte die Entwicklung bis zum Alter 20 zurückverfolgt werden, aber auch die Entwicklungskurven auf

Kernfäule-Stammzahlprozent auf verschiedenen Standorten nach Altem Wald

<table>
<thead>
<tr>
<th>Alten</th>
<th>Kernfäule-Stammzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>120</td>
<td>100</td>
</tr>
</tbody>
</table>

Abb. 15

- frische pleistozyene Lehme
- flachgr. Kalkverwitterungslehme
- mäßig frische pleistozyene Lehme
- mittlgr. Kalkverwitterungslehme
- Feuerstein-Lehme
Kernfäule-Stammszahlprozent auf mittelgründigem Kalkverwitterungslehm

Abb. 16

Erstaufforstung nach Weide
Erstaufforstung nach Acker
Alter Wald

Alter
20 40 60 80 100 120 Jahre

Kernfäule-Netto-Wertverlustprozent auf verschiedenen Standorten

Erstaufforstung nach Weide auf mittelgr. Kalkverwitterungslehm

Erstaufforstung nach Acker auf mittelgr. Kalkverwitterungslehm
frische pleistozäne Lehme
u. flachgr. Kalkverwitterungslehm
mäßige Kalkverwitterungslehm
u. mäßig frische pleistozäne Lehme
Feuerstein-Lehme

%
20
10

Alter
40 60 80 100 120 Jahre

Abb. 17
frischen pleistozänen Lehmen und auf flachgründigen Kalkverwitterungslehmen lassen aus ihrem Verlauf schließen, daß die Schäden im Stallm spätestens im Alter 25 auftreten. Es kann somit für sämtliche Befallsereignisse auf allem Waldboden der Ostalb ein anhaltenderheit einfluss auf den Verlaufen angenommen werden. Anzeichen einer Infektionstürberung, wie auf pleistozänen Lehmen der Mittlerer Alb, sind nicht festzustellen.

Die fächerförmig ausstrahlenden mittleren Kernfaule-Stammzahlprozentkurven der einzelnen Befallsereignisse weisen mittlere Fehler bezogen auf den Kurvenmittelwert von 2,71 % bei den mäßig frischen pleistozänen Lehmen bis 5,25 % bei den Weideaufsätzen auf mittelgründigen Kalkverwitterungslehmen, im Durchschnitt 5,25 % auf.

Die Anordnung der Mittelkurven der einzelnen Befallsereignisse entspricht nicht ganz unserer bisherigen standorts- und standortbedingten Vorstellungen.

So wurde seit Villinger (1951) angenommen, daß Vorliegender und Schleiftorflechte infolge ihrer schwachen Oberbodenver- sauerung geringere Kernfaulechäden aufweisen als Kalkverwitterungslehmen und daß nur Feuersteinehlechte praktisch kernfaulefrei sein; eventuell auftreitende Schäden werden allein in der Wurzelfaule zugeordnet.

Es zeigt sich nun, daß auch die Feuersteinehlechte im Alter 100 Kernfaule-Stammzahlen bis zu 25 % aufweisen und daβ mäßig frische (feuersteinarme) pleistozäne Lehme über 15 % höhere Kernfaule-Stammzahlen aufweisen als Feuersteinehlechte im Alter 100. Die Kalkverwitterungslehmen im Alter 100 von 15 % auf 60 %, die Kalkverwitterungslehmen im Alter 100 von 60 % auf 75 % auf frischen pleistozänen Lehmen.

Lediglich auf mittelgründigen Kalkverwitterungslehmen fanden sich geringe Erstaufstörungen zur getrennten Auswertung. Die anderen Erstaufstörungen auf mäßig frischen pleistozänen Lehmen konnten sich so wenig von Beständen nach alter Wald, daß eine getrennte Auswertung — mindestens vorläufig — überflüssig erscheinen.

Auffällig sind die mittelgründigen Kalkverwitterungslehmen gegen erheblich die Kernfaule-Stammzahl prozent der Erstaufstörungen. Die Erstaufstörungen auf mäßig frischen pleistozänen Lehmen, nach Alter 100 sind durch die Kalkverwitterungslehmen, 45 % auf mäßig frischen pleistozänen Lehmen, 60 % auf flachgründigem Kalkverwitterungslehmen und 75 % auf frischen pleistozänen Lehmen.

In Abb. 16 wurden nochmals die durchschnittlichen Kernfaule-Stammzahlprozentkurven in Beständen auf mittelgründigem Kalkverwitterungslehmen aufgezeichnet. Dabei zeigt sich, daß etwa im Alter 80 das Kernfaule-Stammzahlprozent in Akeraufstörungen fast 25 %, in Weideaufstörungen sogar 45 %, ein Bild, das in Beständen nach alter Wald, die in den Erstaufstörungen sowohl nach Akker als auch nach Weide die Schadpflanzen noch nicht vorhanden sein können, muß für Einwanderer und damit der Infektionsbeginn mit der Schadpflanzen bei der relativen Bedeutung der die Sporennachlieferung durch die derzeitiger Erstaufstörungen, der Verlauf der beiden Mittelkurven bis zum Alter 30, die Lebensjahr anzuzeigen. Der steile Kurvenverlauf, der im Alter 25 das deutliche zum Ausdruck kommt, dürfte auf die unsprächliche Fehlen von Anzügstell- stoffen auf diesen Flächen zurückzuführen sein, wodurch den Schadpflanzen ein weiterer Infektionsvorzüge gegeben werden

Netto-Wertverlustprozentkurven

In Abb. 17 wurden die Netto-Wertverlustprozentvor- sicht zu den Kernfaule-Stammzahlen nochmals aufgezeichnet. Es zeigt sich hierbei, daß die 5 Kernfaule-Stammzahl-Befallsereignisse nach alter Wald bei den Netto-Wertverlustprozenten zu 3 Kurven zusammengefaßt werden können. So fallen die Wertverlustkurven der mittelgründigen Kalkverwitterungs- lehmen den mäßig frischen pleistozänen Lehmen im gesamten Altersbereich total zusammen. Es muß also angenommen werden, daß die höheren Stammzahlprozente der mäßig frischen pleistozänen Lehmen durch geringere mittlere Kernfaule-Stammzahlprozente bedingt sind, die gegenüber den geringeren Stammzahlprozente der mittelgründigen Kalkverwitterungslehmen kompensiert werden. Darauf soll später noch näher eingegangen werden.

Aber auch für die Befallsereignisse flachgründiger Kalkverwitterungslehmen und frische pleistozäne Lehmen lassen sich die Netto-Wertverlustprozenten über dem Alter aufgetragen zu einer Kurve zusammenfällen.

So hat man zwar für die beiden Befallsereignisse getrennte Aus- gleichskurven, so ergibt sich für die frischen pleistozänen Lehmen eine feste konvexe und für die flachgründigen Kalkverwitterungs- lehmen eine flache konvexe Kurve, die etwa im Alter 50 und 110 zusammentreffen.

Die beiden Kurven sind jedoch insofern geringer Wertprozente mit solchen mittleren Fehlen behaftet, daß ihre Aus- gleich durch eine Gerade eine Verbesserung des mathematischen Fehlers um rund 30 % erbringt. Daß auch der ursprünglich günstige mittlere Fehler auf flachgründigen Kalkverwitterungslehmen (u = 0,97 %) durch die Zusammenfallung verbessert werden konnte (u = 2,86 %) wird die Maßnahme.

Von den ursprünglich 8 Standortseignissen auf altem Waldboden sind somit 3 Wertverlust-Befallsereignisse übrig geblieben.

Die Erstaufstörungen auf mittelgründigen Kalkverwitterungslehmen zeigen auch beim Netto-Wertverlustprozent deutliche Unterschiede, ob es sich um Erstaufstörungen nach Akker- oder Weideverwendung handelt. In beiden Fällen treten die Schäden etwas später auf als im alten Waldboden (etwa vom 50. Jahr an), zeigen dann aber eine so stürmische Entwicklung, daß etwa im Alter 80 der Wertverlust auf altem Waldboden 7 %, in Akeraufstörungen 15 % und in Weideaufstörungen sogar 29 % beträgt.

Signifikanzprüfung

Infolge der unterschiedlichen Wertprozente berechnete die Signifikanzprüfung zur Feststellung der statistisch gesicherten Unterschiede zwischen den Kurven der einzelnen Befallsereignisse einige Schwierigkeit. Für die Beziehung Alter/Kernfaule-Stammzahlprozent war auf den drei Befallsereignissen mittelgründiger Kalkverwitterungslehmen, mäßig frische pleistozäne Lehme und Feuersteinlehme die Wertprozente so groß, daß die Normalverteilung unterstellt werden konnte. Für die beiden übrigen Befallsereignisse auf altem Waldboden ließen sich nur einzelne Altersbereiche nach dem t-Test gestatten. Die Wertprozente der Erstaufstörungen für frische Kalkverwitterungslehme sind für einige, sie lädt sich nur anhand benachbarter Kurven einschätzen.

In Tab. 2 werden die Erstaufstörungen der mittelgründigen Kalkverwitterungslehmen für die einzelnen Befallsereignisse die gesicherten Altersbereiche nach dem t-Test mitgeteilt. Dabei zeigt der Überflächengüte durch die Unterschiede zwischen 0,1 % und 2,5. %

Die Tabelle zeigt, daß die Unterschiede zwischen flachgründigen Kalkverwitterungslehmen und frischen pleistozänen Lehmen nicht signifikant sind. Alle anderen Befallsereignisse zeigen mindestens in bestimmten Altersbereichen teilweise auch über den gesamten untersuchten Altersbereichen hinweg gesicherte Unterschiede.

Die Akker- und Weideaufstörungen auf mittelgründigen Kalkverwitterungslehmen dürften sich von Beständen nach altem Wald derselben Standortseignis sowie von Beständen auf Feuersteinlehme, die Weideaufstörungen auch von den mäßig frischen pleistozänen Lehmen gesichert unterscheiden.

Die fehlende Signifikanz zwischen frischen pleistozänen Lehmen und flachgründigen Kalkverwitterungslehmen ist nicht weiter verwunderlich, wenn man die geringe Wert-

Wie bereits gesagt, ergeben sich für die Netto-Wertverlustprozenten für Bestände nach altem Wald nur noch 2 Befallskurven, die sich bei Unterscheidung der Normalverteilung allgemein in drei signifikant unterscheiden. Dabei liegt die Überschätzungswahrscheinlichkeit bei den beiden Kurven: flachgründige Kalkverwitterungslinie = frische pleistozäne Lehme; mittelgründige Kalkverwitterungslinie = häufig frische pleistozäne Lehme für den Altersbereich 50-90 Jahre bei 1,9% in höherem Alter bei 0,1% während die letzteren von den Feuersteinlehmeh der ganzen Altersbereiche hinweg mit einer Überschätzungswahrscheinlichkeit von 0,1% also hochsignifikant unterschieden werden. Die Erschaffung von Walde unterscheiden sich im Altersbereich 50-70 Jahre mit einer Überschätzungswahrscheinlichkeit von 5% von der Kurve der flachgründigen Kalkverwitterungslinie = frische pleistozäne Lehme. Damit ist anzunehmen, daß sie sich im ganzen Altersbereich signifikant von den übrigen Kurven unterscheiden. Dagegen lassen sich für die Aberrierußerungen keine signifikanten Unterschiede feststellen.

F Standort und prozentualer Schadpilzanteil

Zur Vermeidung zeitanspruchsvoller Bestimmungen beschränkten sich die Untersuchungen Dr. Schönhägers auf die Isolierung der 5 häufigsten Rotfaule-Erreger: Fomes annosus, Armillaria mellea, Odontota bicolor, Stereum sanguinolentum und Stereum aereolatum. Infolge der nicht immer scharfen Schalenentnahme durch die Hilfskräfte und der zum Teil ungünstigen Lagerungsbedingungen der Stammesylinder konnten nur aus 530 der 722 Stammesylinder (73,0%) Schadpilze isoliert werden, da jedoch angenommen werden darf, daß hierzu sämtliche starken- bzw. Befallsinhibitoren an nähernd gleichmäßig betroffen wurden, dürfte die Ergebnisse doch als repräsentativ anzusehen sein. Die Ergebnisse sind in der Anhang-Tabelle zusammengefaßt.

Stereum aereolatum

Stereum aereolatum konnte nur an 2 Scheiben aus Schichtlehmfeldern festgestellt werden. In beiden Fällen handelt es sich um Fichten-Reihenbestände 2. Generation nach Laubholz, in denen vor allem Fomes aber auch Armillaria auftreten. Obwohl unsere Stammesylinder von kernfaulen Stäm men stammen, kann nachträglich nicht ausgeschlossen werden, daß Stereum aereolatum auch hier als Wundfäulepilz aufgetreten ist (Schönhäger). In jedem Falle scheint er als grävender Kernfäuleerreger auf der Otsal aus. Stereum sanguinolentum war in den analysierten Proben nicht nachzuweisen.

Odonota bicolor

Odonota bicolor konnte in 7% der Fälle als Kernfäuleerreger isoliert werden. Obwohl er auf flachgründigem Kalkverwitterungsholz dreimal isoliert werden konnte, fehlt er auf mittelgründigem Kalkverwitterungs holz sowohl im Alten Wald als auch in den Erstauflagen völlig. Seine Hauptverbreitung hat er in den häufig frischen pleistozänen Lehmen, in denen er 10% der Schadpilzstellen (Schlußlehm 14%). In den Feuersteinlehmeh, in denen es insgesamt 9% ausmachte, ist eine Abnahme vom FeuersteinSchlußlehm (10%) und Feuerstein-Schlußlehm (10%) über den Oxalis-Myrietis-Typ (9%) zum Myrietis-Schlußlehm-Typ (3%) festzustellen. Offensichtlich zeigt sich hierin eine gewisse Abhängigkeit vom Stauraum des Bodens.

In frischen pleistozänen Lehmen konnte Odonota nur einmal nachgewiesen werden.

Nimm man an, daß das Odonota-Vorkommen auf flachgründigem Kalkverwitterungsholz ein altersbedingtes sekundäres Auftreten darstellt, so könnte daraus geschlossen werden, daß Odonota bicolor als primärer Holzzerstörer nur auf Standorten mit schwach bismäßig saurer Bodenreaktion auftritt.

Fomes und Armillaria

Hauptsächlichste Schadpilze, die in Untersuchungsgebiet 93% der Holzzerstörer stellen, sind Fomes annosus und Armillaria mellea. In Tabelle 3 wurden deren prozentualer Anteil an der Gesamtzahl der gefundenen Schadpilze getrennt nach Standortseitenhänge bzw. daraus resultierende Befallsinhibitoren (gerastert) zusammengefaßt. Daraus sowie aus der kritischen Sichtung des Gesamtmaterials ergeben sich einige interessante Schlußfolgerungen:

1. Mit Ausnahme der frischen pleistozänen Lehme ist in den Kellersäulen auf einem Waldholz eine deutliche Abnahme des Fomes-Anteils mit zunehmender Versauerung festzustellen.

4. In Erstaufforstungsstadien nach Schotterweise auf mittlergründigem Kalk verwachsen wird die Kernfäule fast ausschließlich von Fomes annosus verursacht.

5. Auf frischen pleistozänen Lehmen konnte Fomes nur in einer Fläche festgestellt werden; die Kernfäule wird überwiegend von Armillaria mellea verursacht.

Unterstellen, man bei diesen vielfältigen Schädlingskombinationen noch, daß nicht nur das einzelnen Schädlings, sondern auch verschiedene Stämme eines einzelnen Schädlings verschiedene Wachstums- und damit Zersetzungsgeschwindigkeiten aufweisen, so wie diese vorhandene gegenseitig antagonistische Einflüsse, so zeigt sich deutlich, wie komplex der Zusammenhang zwischen Standort und Kernfäule sein kann. Funktionale Zusammenhänge lassen sich daher auch auf der Basis der Stanfordseinheit bezw. Bestandshöhe nicht erarbeiten, doch haben wir bisher ein eingeschränktes Ordnungsprinzip, mit dieses Pflanzen der Kernfäule auf den einzelnen Bestandes zu erklären.

G Die einzelnen Kernfäulefaktoren

Das Ausmaß der Kernfäule kann im einzelnen Bestand durch die Erfassung verschiedener Faktoren ermittelt werden.

Das Kernfäule-Stammzahlenprozent gibt an, wieviel Stämme gemessen an der Gesamtstammzahl der Fläche Kernfäuleerscheinungen aufweisen.

Das Netto-Vermehrungsvolumen gibt den Prozentanteil des Verlust an Gklä der Gesamtabschlag gegenüber dem Wert an, den der völlig gesunde Bestand bei gleichen Dimensionen zustande gebracht hätte.

Der mittlere Fäuledurchschnitt berücksichtigt sich nur auf die kernfalten Stämme der Fläche und gibt den mittleren Durchschnitt der gesamten durch die Fäule veränderten Zone auf dem Stock an. Da jedoch jede Fäule, abhängig vom geringsten Durchschnitt, ab einem gewissen Zersetzungssgrad eine Holzentwertung darstellt, ist der Fäuledurchschnitt für die Praxis eine relativ wichtige Größe.

Dagegen ist die Fäulehöhe am Einzelstamm bzw. die mittlere Fäulehöhe (wieder nur auf die kernfalten Stämme einer Fläche bezogen) für den Gesamtabschlag und damit für das Ausmaß des Wertverlustes von übergeordneter Bedeutung. In Tab. 4 und 5 wurden nun diese Einzelfaktoren genannt nach Bestandesstufe, sofern als auch zugleich in Beziehung gesetzt und deren Korrelation geprüft. Die Trennung nach kalkverwachsenen Lehm (Tab. 4) und pleistozänen Lehm (Tab. 5) war nur aus Platzgründen notwendig. Das Quadrat der Korrelationskoefizienten, das als Bestimmungsmaß bezeichnet wird, gibt an, wieviel Prozent der erfaßten Fälle durch die Korrelation erklärt werden. Untersuchen wir, daß nur ein Bestimmungsmaß über 50 % als ausreichend angesehen werden kann, so können nur Korrelationen mit einem Koeffizienten von über 0,7 als genügend stark angesehen werden. Betrachten wir die beiden Tabellen dazuauf, so zeigt sie jedoch, daß nur im Aderflächenanstößen auf mittlergründigem Kalk verwachsen und auf frischen pleistozänen
Tab. 4

Standortseinheit

<table>
<thead>
<tr>
<th>Korrelation</th>
<th>14 Fl. 76 J.</th>
<th>33 Fl. 78 J.</th>
<th>9 Fl. 65 J.</th>
<th>4 Fl. 65 J.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter : Kernfäule-Stammzahlprozent</td>
<td>r = 0.670</td>
<td>r = 0.767</td>
<td>r = 0.582</td>
<td>r = 0.997</td>
</tr>
<tr>
<td>Alter : Netto-Wertverlustprozent</td>
<td>r = 0.534</td>
<td>r = 0.292</td>
<td>r = 0.473</td>
<td>r = 0.392</td>
</tr>
<tr>
<td>Alter : Mittlerer Zersetzunggrad</td>
<td>r = 0.011</td>
<td>r = 0.293</td>
<td>r = 0.660</td>
<td>r = 0.962</td>
</tr>
<tr>
<td>Alter : Mittlerer Päuledurchmesser</td>
<td>r = 0.396</td>
<td>r = 0.588</td>
<td>r = 0.705</td>
<td>r = 0.961</td>
</tr>
<tr>
<td>Alter : Mittlere Päulehöhe</td>
<td>r = 0.217</td>
<td>r = 0.582</td>
<td>r = 0.382</td>
<td>r = 0.943</td>
</tr>
<tr>
<td>Mittl. Päuledurchm.: Mittl. Päulehöhe</td>
<td>r = 0.492</td>
<td>r = 0.778</td>
<td>r = 0.732</td>
<td>r = 0.933</td>
</tr>
<tr>
<td>Mittl. Zersetzunggrad : Mittl. Päulehöhe</td>
<td>r = 0.120</td>
<td>r = 0.176</td>
<td>r = 0.224</td>
<td>r = 0.706</td>
</tr>
<tr>
<td>Stammzahlprozent : Wertverlustprozent</td>
<td>r = 0.598</td>
<td>r = 0.238</td>
<td>r = 0.736</td>
<td>r = 0.951</td>
</tr>
<tr>
<td>Mittl. Päulehöhe : Mittl. Päuledurchm.</td>
<td>9.6 - 28.5</td>
<td>20.8 - 36.0</td>
<td>22.5 - 35.0</td>
<td>22.9 - 28.6</td>
</tr>
</tbody>
</table>

* Flächendurchschnittsalter

Tab. 5

Standortseinheit

<table>
<thead>
<tr>
<th>Korrelation</th>
<th>Pleistosäme Lehme</th>
<th>Feuersteinlehme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>übersig frisch</td>
<td>frisch</td>
</tr>
<tr>
<td>Alter : Stammzahlprozent</td>
<td>r = 0.787</td>
<td>r = 0.814</td>
</tr>
<tr>
<td>Alter : Netto-Wertverlustprozent</td>
<td>r = 0.494</td>
<td>r = 0.718</td>
</tr>
<tr>
<td>Alter : Mittl. Zersetzunggrad</td>
<td>r = 0.313</td>
<td>r = 0.611</td>
</tr>
<tr>
<td>Alter : Mittl. Päuledurchmesser</td>
<td>r = 0.622</td>
<td>r = 0.741</td>
</tr>
<tr>
<td>Alter : Mittlere Päulehöhe</td>
<td>r = 0.607</td>
<td>r = 0.799</td>
</tr>
<tr>
<td>Päuledurchmesser : Päulehöhe</td>
<td>r = 0.711</td>
<td>r = 0.934</td>
</tr>
<tr>
<td>Zersetzunggrad : Päulehöhe</td>
<td>r = 0.251</td>
<td>r = 0.953</td>
</tr>
<tr>
<td>Stammzahlprozent : Wertverlustprozent</td>
<td>r = 0.586</td>
<td>r = 0.786</td>
</tr>
<tr>
<td>Päulehöhe : Päuledurchmesser</td>
<td>2.0 - 27.0</td>
<td>2.1 - 17.5</td>
</tr>
<tr>
<td></td>
<td>15.9</td>
<td>12.9</td>
</tr>
</tbody>
</table>

* Flächendurchschnittsalter

44
Lehmen die meisten Beziehungen dieser Anforderung genügen. Während auf den übrigen mittelgründigen Kalkverwitterungsumscheidungen auf dem Pfeilerfundament festgehalten werden, sind auf dem Pfeilerfundament der Verwaltungshoheiten nur wenige Beziehungen genügend stark korreliert sind, ergeben sich auf flachgründigen Kalkverwitterungsumscheidungen und den Feuersteinlehmen überhaupt keine ausreichenden Korrelationskoeffizienten. Bereits im Abschnitt F wurde darauf hingewiesen, daß die auffallend unterschiedliche Schadplzkombination auf den verschiedenen Befallsgraden zu stark die möglichen fachlichen Erwägungen aufbiegen könnten. Da die gut korrellierten Beziehungen nur auf Befallsleistungen anzuwenden sind, die flächenmäßig nur wenig belegt sind (aus Akkerausschnitten fehlt überdies jede Bilanzbestimmung) können daraus zunächst keine weiteren Schlüsse gezogen werden.

1. Mittlerer Zersetzungssgrad, Fäuledurchmesser und Fäulehöhe

Bereits im Abschnitt F wurde darauf hingewiesen, daß wir auf sätzlich flächenbasierten Ansätzen mit dem ersten Auftreten der Kernfäulnissymptome am Stock etwa im Alter 20 zu rechnen haben. Nur wenn dieser Zeitpunkt als etwaiger Infektionsbeginn angenommen, so lassen sich aus unserem Material für jede Befallsleistung derartige Schadplzgeschwindigkeiten der Schadplze je Jahr errechnen. Diese betragen auf:

- flachgr. KVL: Alter Wald: 4,2 cm/Jahr
- mittler. KVL: Alter Wald: 5,8 cm/Jahr
- mittler. KVL: Akkerausschnitt: 4,9 cm/Jahr
- mittler. KVL: Weiderausschnitt: 7,8 cm/Jahr
- mäßig frische pleistozäne Lehme: 4,0 cm/Jahr
- frische pleistozäne Lehme: 3,8 cm/Jahr
- Feuersteinlehme: 3,6 cm/Jahr

Korreliert man diese durchschnittlichen Schadplzgeschwindigkeiten mit den verschiedenen Schadplzkombinationen der auf den Befallsleistungen, so errechnet sich für den Fomes-Anteil ein Korrelationskoeffizient von 0,664, für den Armillaria-Anteil von 0,576 und für die Summe beider ein solcher von 0,566. Da sich jedoch gleiche Schadplzkombinationen aus verschiedenen Gesichtspunkten zusammenzusetzen können, ist dieses Ergebnis unbefriedigend.

Wir können also mit einiger Wahrscheinlichkeit aus dem Verhältnis mittlerer Fäulehöhe: mittlerer Fäuledurchmesser in Auffälligkeiten auf den Flächen derartige Aussagen treffen, so daß ein Vorsichtsmaßnahme in den Einzelfällen einer Befallsleistung wesentlich größere Streuungen aufweist als die Mittelwerte der Befallsleistungen in den Befallsleistungen einer Befallsleistung untereinander. korreliert man das Verhältnis der mittleren Befallsleistungen mit dem mittleren Fäuledurchmesser, so zeigt der Korrelationskoeffizient von 0,876 einen recht strengen Zusammenhang.

2. Prozentualer Anteil der Schadensbilder

Um einen eventuellen standörtlichen Zusammenhang zwischen Schadensbild am Stock und Zersetzungsgeschwindigkeit im Stamm aufzuklären, können die Schadensbilder am Stock getrennt nach zentraler, ringförmiger, fleckiger und peripherer Fäule aufgenommen. Die letzteren, die nur Wundfählen beinhaltete, wurde von der bisherigen Verwaltung ausgeschlossen. In Tab. 6, in der die für diese Untersuchung notwendigen Mittelwerte zusammengestellt wurden, wurden die Vorherrschaft der Wundfählen aufgenommen.

Bei Betrachtung der prozentualen Anteile der Schadensbilder auf den einzelnen Befallsleistungen zeigt sich zunächst eine sehr große Streuung der Einzelwerte, obwohl auf die Zusammenfassung der verschiedenen Flächenbetrachtung zurückzuführen ist.

Sieht man von den peripheren Fählen ab, die sicher keine Standortabhängigkeit aufweisen, so zeigen sich deutliche Unterschiede zwischen den Befallsleistungen, die als derzentrale und der fleckige Fäule. Die Unterschiede dürften sich wahrscheinlich noch vergrößern, wenn das verschiedene Durchschnittsalter zwischen altem Wald und Erstauflagen berücksichtigt würde.

So zeigen etwa der Erstauflagen auf mittelgründigen Kalkverwitterungsumscheidungen bei einem Flächenleistungsalter von 65 Jahren 73% zentrale Fäule während die Erstauflagen mit einem Durchschnittsalter von 75 Jahren nur 33% zentrale Fäule aufweisen.

Beim mittleren Zersetzungsalter der zentralen Fäulen zeigten die Feuersteinlehme die geringsten Werte. Allerdings ergeben sich auch innerhalb dieser Befallsleistung — wie später noch gezeigt werden soll — deutliche Unterschiede.

Die mittleren Fäulehöhen ist in allen Befallsleistungen bei den zentralen Fäule und dort wieder bei den Erstauflagen auf Kalkverwitterungsumscheidungen am größten. Bei geringstem Durchschnittsalter auffallend große mittlere Fäulehöhe von 3,9 m in dieser Befallsleistung läßt sich jedoch — wie bereits nadväum ein — nicht auf eine höhere Schadplzgeschwindigkeit der Schadplze vielmehr allein auf die frühe Infektion auf einer höheren Anzahl der kernförmigen Stämme zurückführen.

Der Anteil der fleckigen Fäulen ist auf flachgründigen Kalkverwitterungsumscheidungen sehr hoch und in den Erstauflagen auf mittelgründigen Kalkverwitterungsumscheidungen am geringsten, doch sind die Unterschiede zwischen den Befallsleistungen so gering, daß sich zunächst keine standörtliche Abhängigkeit ableiten läßt. Auffallend ist der sehr geringe prozentualen Befallsanteil geringe durchschnittliche Schadplzeleistung und die nahezu einheitliche geringe mittlere Fäulehöhe. Der geringste Anteil der fleckigen Fäulen sowie der geringe prozentuelle Zersetzungsalter in Erstauflagen auf mittelgründigen Kalkverwitterungsumscheidungen sowie die geringen Fäulehöhen deuten vielleicht wieder darauf hin, daß dieses
<table>
<thead>
<tr>
<th>Schadensbild und</th>
<th>Zentral</th>
<th>Mittel</th>
<th>Ringförmig</th>
<th>Fleckig</th>
<th>Peripher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter Wald</td>
<td>Zerstörung</td>
<td>Fehlende</td>
<td>Zerstörung</td>
<td>Fehlende</td>
<td>Zerstörung</td>
</tr>
<tr>
<td>1.8 mm</td>
<td>52</td>
<td>75</td>
<td>2.4</td>
<td>67</td>
<td>74</td>
</tr>
<tr>
<td>2.4 mm</td>
<td>52</td>
<td>75</td>
<td>2.4</td>
<td>67</td>
<td>74</td>
</tr>
<tr>
<td>2.9 mm</td>
<td>52</td>
<td>75</td>
<td>2.4</td>
<td>67</td>
<td>74</td>
</tr>
<tr>
<td>3.9 mm</td>
<td>52</td>
<td>75</td>
<td>2.4</td>
<td>67</td>
<td>74</td>
</tr>
<tr>
<td>4.9 mm</td>
<td>52</td>
<td>75</td>
<td>2.4</td>
<td>67</td>
<td>74</td>
</tr>
</tbody>
</table>

Die mykologischen Untersuchungen Dr. Schönhaars ermöglichten es, die Kernfäule-Schadensbilder mit ihrem prozentualen Anteil, dem mittleren Zersetzungsgrad und der mittleren Fäulehöhe auf den einzelnen Standorts- bzw. Belassenschrägen an der gefundenen Schadpilzanstellen von *Fomes annosus* und *Armillaria mellea* gegenüberzustellen. Hierbei blieben die peripheren Windfäulen unberücksichtigt, die allgemein geringen Anteile der ringförmigen Fäulen wurden der fleckigen Fäule zugerechnet.

Tab. 6: Prozentualer Anteil der Schadensbilder mit mittlerem Zersetzungsgrad und mittlerer Fäulehöhe

Die Schadpilzkombination von *Fomes* und *Armillaria* auf den einzelnen Standorten und Belassenschrägen, sowie — so weit möglich in Mist- und Reibeständen — wurden bereits in der Tab. 3 zusammengestellt und ihre Ergebnisse im Abschnitt B besprochen.

Korrelliert man nun den prozentualen Anteil der zentralen Fäulen bzw. deren mittleren Fäulehöhen mit dem entsprechenden *Fomes* bzw. *Armillaria*-Anteil, so ergibt sich auch bei Ausscheidung der frischen pleurozänen Lehme, deren Schadpilzannteil völlig aus dem Rahmen fällt — in keinem Fall ein befriedigender Zusammenhang. Dieselbe Prüfung für die fleckigen Fäulen ist überflüssig, da deren prozentualer Anteil von den zentralen Fäulen abhängt und deren mittlere Fäulehöhen zu wenig differieren. Es zeigt sich also recht deutlich, daß neben *Fomes* und *Armillaria* sicher noch andere Schadpilze, vielleicht aber auch (bei unterschiedlichen Anteilen der beiden) verschiedene antagonistische Wirkungen eine Rolle spielen.

Im alten Wald auf mittelgründigen Kalkverwitterungsehmen ergeben sich bei Reim- und Mistbeständen gleichlaufende Entwicklung. So entspricht einem *Armillaria*-Anteil von 25% in Reibenbeständen 37% fleckige Fäulen während in Mistbeständen 58% *Armillaria* 50% fleckige Fäulen hervorrufen. Unverständlich ist allerdings auch hier.
das gerade in Mischbeständen mit höherem *Amelaria*-Anteil sowohl in den zentralen als auch in den flächenständigen Füllungshöhen vorzustehendes Verhältnis, auch wenn die Füllungshöhe höher sind als in reinen Mischungen mit höherem *Fomes*-Anteil (vgl. Abschn. 2 a).

Beiden den zur Befallsleistung der Feuersteinhöhe gehörenden Standortseitenheiten ergab sich wieder eine Reihenfolge von Täglichkeit, die vorläufig noch nicht geklärt werden können. Trotz etwa gleicher *Fomes* - und *Amelaria*-Anteile ist bei der zentralen Füllung eine deutliche Abnahme der Füllungshöhe mit zunehmender Versauerung festzustellen, während sich bei der flächenständigen eine geringfügige Entwicklung andeutet.

3. Prozentualer Kernfälleanteil an den soziologischen Stammklassen

In Tabelle 8 wurden die Werte für die untersuchten Befallsleistungen zusammengestellt.

Betrachtet man die zusammengesetzte der verschiedenen Stammklassen so fällt zunächst der geringe Prozentsatz der Vorherrscher auf, der bei etwa gleichen Anzahl auf vergleichbaren Befallsleistungen in der Ostalb nur halb so groß ist wie in der Mittleren Alb. Wenn auch gelegentlich subjektive Fehler der verschiedenen Aufnahmeleiter nicht auszuschließen sind, so scheint hier doch eine systematische Abweichung vorzuliegen, die wahrscheinlich in der höheren Schneebrechungsfähigkeit der Bestände auf der Ostalb begründet sein dürfte.
Bei Betrachtung der tatsächlichen Kernfäuleprozente fällt zunächst die ungewöhnliche Streuung der Einzelfelder vor allem bei den Vorherrschenden aber auch den anderen Stammklassen auf. Dies läßt sich dadurch erklären, daß in den Befallseinheiten alle Altersstufen zusammengefaßt sind und vor allem in der Jugend und im Alter der Kernfäulebefall weniger Stämme über den Kernfäuleanteil einer soziologischen Stammklasse entscheiden können.

Zur Ausschaltung der Kernfäuledisposition der einzelnen Befallseinheiten wurden die tatsächlichen Durchschnittswerte in berichtigte umgerechnet.

II Diskussion

Fassen wir die Ergebnisse der Untersuchungen auf der Ostall zusammen, so läßt sich kurz folgendes sagen:

1. Kernfäule und Standort

Auch auf den pleistozänen Lehmen läßt sich dieser Zusammenhang mit dem Kalkgehalt weiterverfolgen. So hängen die wesentlich höheren Werte der frischen pleistozänen Lehm meist mit einer sekundären Aufkalkung durch kalkreiches Siebendruckwasser zusammen.

Lediglich die mäßig frischen pleistozänen Lehm, die in der Regel tief entkalkt sind, passen nicht in dieses Schema und zeigen weitestgehend Kornfäule-Stammzahlwerte, die über denen des mittelgründigen Kalkverwitterungsohms liegen. Eine Erklärung hierfür ist bisher nicht möglich.

Die Feuersteinlehme zeigen dann wieder die ihrer kalkungsstich entsprechenden Werte.

Tabelle 8

<table>
<thead>
<tr>
<th>Kernfäule und soziologische Stammklassen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standorteinheit bzw. Befallseinheit</td>
</tr>
<tr>
<td>(Flächenzahlen und Durchschnittsalter)</td>
</tr>
<tr>
<td>%</td>
</tr>
<tr>
<td>I flachgr., KVL, Alten Wald (14, 76)</td>
</tr>
<tr>
<td>II mittlerer, KVL, Alten Wald (28, 92)</td>
</tr>
<tr>
<td>III mittlerer, KVL Brandpig. (11, 69)</td>
</tr>
<tr>
<td>IV mäßig frische Lehme Alten Wald + Eroberung (55, 7%)</td>
</tr>
<tr>
<td>V frische pleistozäne Lehme Alten Wald (6, 7%)</td>
</tr>
<tr>
<td>VI Feuersteinlehme Alten Wald (6, 7%)</td>
</tr>
</tbody>
</table>

48
Dagegen ergeben sich bei den Netto-Wertverlusten infolge unterschiedlicher Zersetzungsbedingungen nur noch drei statistisch gesicherte Kurven, deren Abstufung die unterschiedliche Entwicklung der Standorte deutlich widerspiegelt.

2. Kernfäule und Erstauflage

3. Kernfäule und Fichtengeneration

Nach Jüttles setzte die Fichtenwaldbauvorschrift auf der Ostallgäu ab 1750 ein. Wir haben es hier also schon häufig mit der zweiten Generation, teilweise sogar der dritten Generation Fichte zu tun. So konnten in unseren zwei und 12 der dritter Generation in die Untersuchung einbezogen werden.

Fichtenbestände zweiter Generation finden sich auf sämmlchen Standortszeichen zusammen mit Beständen erster Generation nur im Alter von etwa 50 bis 80 Jahren. Die Bestände dritter Generation fanden sich nur auf pleisterlehn Lehmen und Feuersteinlehn im Alter bis zu 40 Jahren.

Während sich in den Mittleren Alb immerhin ergeben, daß die zweite Generation auf mittelgründigem Kalkverwitterungsgleben ab Alter 60 geringere Kernfäule aufweisen muß, ist dies auf der Ostallgäu aber nicht der Fall. Worauf dieses unterschiedliche Ergebnis zurückzuführen ist, kann im Augenblick nicht geklärt werden.

Da sich Bestände dritter Generation nur bis zum Alter 40 fanden, sind Prognosen noch nicht möglich.

4. Kernfäule in Mischbeständen

Seit Beginn einer Fichte/Buche aus unterbauzeitlichen Gründen stets problematisch war und muß nur heran- kleinstandsweise verwirklicht werden, war es sehr mühsam, im Untersuchungsgebiet geeignete Beobachtungsflächen ausfindig zu machen. Trotzdem konnten 22 Bestände mit 1 bis 100 prozentueller Buchenbestand von 1 bis 10 Jahre und ein Bestand mit 90% Tannenbestand untersucht werden. In der Fläche liegen auf Kalkverwitterungsgleiten, auf pleisterlehn Lehmen, der Rest auf Feuersteinlehn.

Auf sämmtlichen untersuchten Standortseinheiten der Ostallgäu liegen die Mischbestände mit bis zu 50% Buche sowohl in der Fichtenkernfaulemasszahl als auch in den Wertverlust durchaus im Streuverlauf der Ausgleichskurven. Ein deutlicher Einfluß der Buchenbeimischung ist also nicht festzustellen. Es muß daher angenommen werden, daß auch ein hoher Buchenanteil die Kernfäulebefall der Fichte weniger beeinflußt als andere, bisher noch ungeklärter Faktoren.

Im Bereich des mittelgründigen Kalkverwitterungsgleiten wurde die untersuchten Mischbestände wesentlich geringere Fichten-Anteile, dagegen höheren Anteil an Antagonisten auf, als die Fichten-Kernfäule (vgl. Tab. 3).

Insgesamt läßt sich also bei all der Versuche feststellen, daß die Beimischung anderer Baumbarten den Kernfäulebefall der Fichtenbestände nicht generell positiv beeinflußt. Es sollte daher rechtfertigt überlegt werden, ob solche — infolge verschiedener Höhenwuchsunterschiede — sehr kostspieligen Mischbestände — soweit nicht sonstige beständige, boden- biologische oder landschaftspflanzerische Gründe dafür sprechen — weiterhin unter allen Umständen begründet werden sollten.

5. Kernfäule und Ernährungszustand der Fichte

Zur Frage der Beziehungen zwischen Ernährungszustand und Kernfäulebefall der Schwäbischen Alb hat schon Ruhfues (1965) einen umfangreichen Beitrag geliefert. Mit den vorliegenden, auf größere Bestandsanteile ausgedehnten Untersuchungen im Rahmen der hier dargestellten statisti-
schen Aufnahmen eroffneten wir uns weitere und noch besser geeignete Einblicke in die ernährungskundlichen Beziehun-
gen zum Kornfäulebefall. In einer größeren Anzahl speziell ausgewählter Bestände wurden Boden- und Nadelproben sorgfältig aufgearbeitet. Die Nadelprobenanahme er-
folgte im Herbst und Winter 1970/71, wobei jeweils Material vom obersten Wirtel an 10 Bäumen pro Untersuchungsein-
heit entnommen wurde.

Die Ergebnisse der nadelanalytischen Untersuchungen sind in der Tabelle 9 in Form gemittelten Werte zusammen-
gestellt. Über die Ergebnisse der bodenanalytischen Er-
rechnzung wird im vorliegenden Heft (Evers 1973) im Rah-
men einer gesonderten Abhandlung berichtet.

Der Überblick, den Tabelle 9 gewährt, zeigt, daß mit wenigen Ausnahmen die in den Nadeln ermittelten Nähr-
stoffkonzentrationen bei allen untersuchten Elementen sehr gute Werte aufweisen. Sie stehen damit im deutlichen Ge-
gen satz zu den von Rehfueß (1973, im vorliegenden Heft) bei den Erhebungen 1969 im Untersuchungsgebiet Baar und
Baar-Schwarzwald gefundenen Nährstoffgehalten der überragend tief liegen. Andererseits sind unsere Nähr-
stoffelemente geringfügig schwächer als die von Rehfueß (1969) bei seinen Erhebungen 1967 im Bereich der Ostalb
gefundene.

Es hat sich herausgestellt, daß die Nährstoffkonzentra-
tionen der Nadeln in offenbar starker Abhängigkeit von Ko-
arztschaften schwanken (Evers 1972). So ergeben sich sowohl jährlich als auch regionale Differen-
zen, die Vergleiche mit zu anderen Zeiten und in anderen Gebieten erhobenen Ernährungszuständen erschweren.
Außerdem wird ganz allgemein ohne die Kenntnis der jeweiligen Pegelzenzahlen bei den Nährstoffspiegelwerten die Be-
urteilung des Ernährungszustandes unmöglich.

Auf Grund der bisherigen Erkenntnisse ist der Konzentrations-
vergleich auf der Ostalb 1970 ungefähr als normal einzuschätzen, während er im Erhebungszeitraum von Rehfueß, 1967, analog zu anderen Gebieten sicher noch hoch liegt. Die Nährstoff-
versorgung kann daher, wie schon Rehfueß feststellte, im großen und ganzen als gut bis ausreichend angesehen werden.

Während sich jedoch bei den Untersuchungen von Reh-
feueß ergab, daß der Kornfäulebefall überdurchschnittlich häufig mit niedrigen Stickstoff-, Phosphor-, Kalium- und Ei-
ßusspigelwerten gekoppelt ist, zeichnet sich bei unserem Untersuchungsmaterial dieser Zusammenhang nicht so ein-
deutlich ab. Die Nährstoffwerte streuen weit über den Be-
stallgrenzen. Lediglich innerhalb einzelner Stämme und in ausgeprägt streifigen Beziehungen erkennbar, die jedoch, bei der geringen Zahl der Prüf-

glieder, noch zufällig sein können. Im übrigen hat sich über die unzureichende Stickstoffversorgung der Fichten nach

Weide bestätigt.

Auss Tabelle 9 wird ersichtlich, daß hohe Befallssgrade oft
mit vergleichsweise schwachen Stickstoffkonzentrationen in den Nadeln zusammenfallen (vgl. Zeile 1, haufig, KVL mit 41 % Befall bei 1,36 % N, Zeile 6, mittelgroß, KVL Wei
deauflora, 66 % Befall und 1,27 % N oder Zeile 7, Schiffholz 1. Gr. mit 43 % Befall und 1,26 % N), aber

dem stehen viele Einzelbäume entgegen und als ganze Gruppe die (in Zeile 15 aufgeführten) frischen Pleistozänen

Gruppe mit 58 % Befall und dem ausgezeichneten N-Gehalt der Nadeln von 1,56 %.

Weniger noch als bei der Stickstoffversorgung zeigen sich
bei den übrigen Nährstoffen klare Beziehungen zum Befallgrad.

Auf diese Befunde läßt sich nun nicht ableiten, daß der Ernährungszustand der Fichten für die Kornfäuleanfälligkeit

bedeutlicher sei. Wie Rehfueß schon betont, erlauben wir nadelanalytisch einen Zustand der mit dem zum Zeitpunkt

der Infektion (von 20—60 Jahren) keineswegs mehr über-

einzustimmen braucht. Mit einigem Sicherheit läßt sich nur

annehmen, daß ein heute bei älteren Beständen als unzu-

rechend diagnostizierter Ernährungszustand, wie beispiels-

weise bei den Weideausfallungen, auch in den jungen

Beständen schon bestanden hat. Schließlich muß noch bedacht werden, daß es Fichtenbestände sind, die in der Regel bedeutend wider-

standsfähiger sind als die anderen Stammarten. Es wäre in jedem Fall zu bedeutend ver-

stärken sollte, nur ein Faktor unter mehreren oder vielen sein dürfte, und die Zusammenhänge durch Aufklärungen

schwer durchschaukeln.

Auf ein interessantes Ergebnis am Rande dieser Unter-

suchung sei noch hingewiesen: In den auf verschiedenen

Standortseigenschaften untersuchten zwei Fichtengenerationen zeigte sich jeweils eine deutliche Tendenz zu besseren Stick-

stoffkonzentrationen, die meist auch mit einer verschärften Phos-

phataufnahme verbunden ist. Bei stärker versauerter Ein-

heiten wie Oxalis-Myrtilles- und Myrtilles-Schöberei-Typ

weisen die Fichten der zweiten Generation außerdem deut-

lich geringere Calcium-Gehalte auf. Darin spiegelt sich

nicht, wie nun meinen könnte, eine in der zweiten Fichten-

generation allgemein veränderte Ernährungsphysiologie wider, son-

dern es ist einfach das stark differenzierte Durchschnittsalter der Bestände erster und zweiter Generation, das in dieser

Weise niederschlägt. Hierin zeigt sich ein weiterer Einflu-

satz des Versuchs, zwischen Kornfäulebefall und nadel-

analytisch ermitteltem Ernährungszustand Beziehungen

zu erübrigen.

6. Kornfäule und Düngung

Seit etwa Mitte der 30er Jahre wurden auf der Ostalb Feuersteinlehme mit Kalk und Phosphor düngt. Da mit diesem Dünger die Anhebung der pH-Werte verbunden ist, muß mit der Möglichkeit gerechnet werden, daß durch die Düngung auch die Schadpilz gefördert werden könnten (vgl. Abschn. H.1 und die Abhandlung von Evers im vor-
liegenden Heft). Es wurden daher bei unseren Untersuchun-

gen sämtliche gedüngten Bestände gesondert festgehalten.

Leider war das Material von 18 Beständen zu gering, um es nach Düngungsgewichte, Düngungszüge und Düngungsmengen aufzu-

schlußgeben. Es konnten daher nur — wie in Abb. 13 — die ge-

düngten (unterstrichen) den u n g e d ü n g e n

Beständen auf dieser Befallseinheit gegenübergestellt werden.
Es zeigt sich, daß mehr als zwei Drittel der gedüngten Bestände mit ihren Kornfäule-Stammzahlprozenten unter

der Angliegendekurve liegen. Zumindest aus unserem Material ist also eine gezielte Bevölkerung der Kornfäule durch die Düngung nicht abzuleiten.

Allerdings muß hiervon (wie von Rehfueß für die Ernährungs-

7. Kornfäule, Standort, Schadpilzanteil

(Zusammenfassung des Abschnittes I)

Durch die mykologische Untersuchungen von Hans und

Schöner erhofften wir uns auf der Ostalb einen Einblick in

den Zusammenhang zwischen Kornfäulebefall, Standort und Schadpilzanteil.

Hau zerstellt in Nr. 20 dieser Mitteilungen über den Zusam-

menhang zwischen Makromyzetenflora und Kornfäulebefall in älteren Fichtenbeständen auf der Schwäbischen Alb be-

richtet. Die von Schönau an 5 Schadpilzarten aus der Ostalb durchgeführten Abimpfungen und Isolierungen er-

bracht eindrucksvoll die Faktoren der Hau, scheidt als die gräulivere Kornfäule-

rerger auf der Ostalb aus.

Obwohl der bisweilen in 7 % der Fälle als Kornfäule-

rerger isoliert werden. Seine Hauverbreitungs- in den

müßig frischen pleistozänen Lehmen oder feuchten Steinen be-

Der Kornfäule erster den Schadpilz als primärer Holzerstößer nur auf Standorten mit schwach bis mäßig

saurem Bodenrauhheit auftritt. 50
<table>
<thead>
<tr>
<th>Standortseinheit u. Bestandsort</th>
<th>Alter</th>
<th>Kernfäule-Stammszahl %</th>
<th>N %</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fl. KVL Alter Wald 1.Gen.</td>
<td>66</td>
<td>41</td>
<td>1.36</td>
<td>153.1</td>
<td>528</td>
<td>711</td>
</tr>
<tr>
<td>m KVL Alter Wald 1.Gen.</td>
<td>81</td>
<td>25</td>
<td>1.39</td>
<td>155.3</td>
<td>497</td>
<td>713</td>
</tr>
<tr>
<td>" 2.Gen.</td>
<td>45</td>
<td>22</td>
<td>1.52</td>
<td>162.7</td>
<td>684</td>
<td>641</td>
</tr>
<tr>
<td>" Mischb.</td>
<td>80</td>
<td>22</td>
<td>1.27</td>
<td>159.8</td>
<td>455</td>
<td>734</td>
</tr>
<tr>
<td>m KVL Alter Wald</td>
<td>75</td>
<td>22</td>
<td>1.40</td>
<td>155.9</td>
<td>510</td>
<td>710</td>
</tr>
<tr>
<td>m KVL Weite-Aufforstung</td>
<td>60</td>
<td>66</td>
<td>1.27</td>
<td>171.1</td>
<td>655</td>
<td>778</td>
</tr>
<tr>
<td>Schichtlehm 1.Gen.</td>
<td>101</td>
<td>43</td>
<td>1.28</td>
<td>132.1</td>
<td>412</td>
<td>555</td>
</tr>
<tr>
<td>" 2.Gen.</td>
<td>70</td>
<td>37</td>
<td>1.43</td>
<td>173.5</td>
<td>487</td>
<td>569</td>
</tr>
<tr>
<td>" Mischb.</td>
<td>70</td>
<td>36</td>
<td>1.40</td>
<td>166.5</td>
<td>459</td>
<td>625</td>
</tr>
<tr>
<td>Schichtlehm Alter Wald</td>
<td>80</td>
<td>38</td>
<td>1.36</td>
<td>165.6</td>
<td>439</td>
<td>579</td>
</tr>
<tr>
<td>Schlufflehm 1.Gen.</td>
<td>62</td>
<td>38</td>
<td>1.42</td>
<td>187.8</td>
<td>538</td>
<td>531</td>
</tr>
<tr>
<td>" 2.Gen.</td>
<td>64</td>
<td>36</td>
<td>1.45</td>
<td>189.7</td>
<td>493</td>
<td>559</td>
</tr>
<tr>
<td>Schlufflehm Alter Wald</td>
<td>63</td>
<td>37</td>
<td>1.43</td>
<td>175.2</td>
<td>523</td>
<td>544</td>
</tr>
<tr>
<td>mäsige frische pleisto-Zeit-Lehme</td>
<td>75</td>
<td>38</td>
<td>1.38</td>
<td>166.5</td>
<td>484</td>
<td>575</td>
</tr>
<tr>
<td>frische pleistozeit-Lehme</td>
<td>75</td>
<td>58</td>
<td>1.50</td>
<td>161.2</td>
<td>518</td>
<td>484</td>
</tr>
<tr>
<td>Feuerstein-Schichtlehm 1.Gen.</td>
<td>73</td>
<td>12</td>
<td>1.38</td>
<td>159.9</td>
<td>487</td>
<td>711</td>
</tr>
<tr>
<td>" Schlufflehm 1.Gen.</td>
<td>91</td>
<td>15</td>
<td>1.38</td>
<td>172.7</td>
<td>413</td>
<td>486</td>
</tr>
<tr>
<td>" Schlufflehm 2.Gen.</td>
<td>55</td>
<td>19</td>
<td>1.48</td>
<td>189.4</td>
<td>509</td>
<td>447</td>
</tr>
<tr>
<td>Feuerstein-Schlufflehm</td>
<td>77</td>
<td>15</td>
<td>1.40</td>
<td>166.5</td>
<td>487</td>
<td>579</td>
</tr>
<tr>
<td>OM-Typ 1.Gen. unged.</td>
<td>53</td>
<td>14</td>
<td>1.39</td>
<td>168.2</td>
<td>569</td>
<td>482</td>
</tr>
<tr>
<td>" 1.Gen. ged.</td>
<td>81</td>
<td>6</td>
<td>1.40</td>
<td>176.7</td>
<td>485</td>
<td>467</td>
</tr>
<tr>
<td>" 2.Gen.</td>
<td>66</td>
<td>21</td>
<td>1.42</td>
<td>174.3</td>
<td>554</td>
<td>335</td>
</tr>
<tr>
<td>Oxalis-Nyctillius-Typ</td>
<td>77</td>
<td>13</td>
<td>1.40</td>
<td>175.0</td>
<td>512</td>
<td>438</td>
</tr>
<tr>
<td>MSS-Typ 1.Gen. unged.</td>
<td>63</td>
<td>9</td>
<td>1.37</td>
<td>155.9</td>
<td>634</td>
<td>386</td>
</tr>
<tr>
<td>" 1.Gen. ged.</td>
<td>92</td>
<td>15</td>
<td>1.43</td>
<td>194.4</td>
<td>469</td>
<td>415</td>
</tr>
<tr>
<td>" 2.Gen. ged.+unged.</td>
<td>13</td>
<td>8</td>
<td>1.55</td>
<td>205.2</td>
<td>585</td>
<td>335</td>
</tr>
<tr>
<td>Nyctillius-Schreberi-Typ</td>
<td>90</td>
<td>13</td>
<td>1.45</td>
<td>197.7</td>
<td>500</td>
<td>390</td>
</tr>
<tr>
<td>Feuersteinlehm</td>
<td>76</td>
<td>13</td>
<td>1.41</td>
<td>173.2</td>
<td>508</td>
<td>488</td>
</tr>
</tbody>
</table>
Fomes annosus und Armillaria mellea sind die hauptsächlichsten Schadpilze im Untersuchungsgebiet. Aus der Tab. 3 und einer kritischen Sichtung des Gesamtergebnisses lassen sich folgende Schlüsse ziehen:

1. Mit Ausnahme der frischen pleistozänen Lehme ist im Untersuchungsgebiet auf alteren Waldböden eine deutliche Abnahme des Fomes-Anteils mit zunehmender Versauerung festzustellen.

4. In Erstauflagen nach Schädlage auf mittelgründigen Kalkverwitterungsebenen wird die Kernfäule fast ausschließlich von Fomes annosus verursacht.

5. Auf frischen pleistozänen Lehmen konnte Fomes nur in einer Fläche festgestellt werden; die Kernfäule wird überwiegend von Armillaria mellea verursacht.

1 Ertragshandel-finanzielle Auswirkungen der Kernfäule

Auf diese Weise konnte die endgültige Nettoproduktion pro ha errechnet werden, die sich aus der Summe der Brutschäden und des Aussehens aufgegeben — durch eine leicht geschwindigkeitskurve auszugeben ließen.

Bei den Schicht- und Schlufflehm-Kernfäulen kann ganz allgemein angenommen werden, daß 30% Feuersteineinheit sind und somit zur Befallsflächen „mäßig frische pleistozäne Lehme“ gehören, während 70% einen hohen Feuersteineinheit aufweisen und daher der Befallsfläche „Feuersteindecke“ zugeteilt werden müssen.

Unter diesen Annahmen ergibt sich für den heutigen Zustand der Verteilung der Fichtenfläche auf die einzelnen Befallsflächen:

<table>
<thead>
<tr>
<th>Befallsfläche (Wertverlust)</th>
<th>Fichtenfläche</th>
</tr>
</thead>
<tbody>
<tr>
<td>flachgründiger Kalkverwitterungslehm + frische pleistozäne Lehme</td>
<td>ha</td>
</tr>
<tr>
<td>mittelgründiger Kalkverwitterungslehm + mäßige frische pleistozäne Lehme</td>
<td>1787</td>
</tr>
<tr>
<td>Feuersteindeckeneinheit</td>
<td>4029</td>
</tr>
</tbody>
</table>

Tabelle 1

Gesamtwertleistung an Wert (aus 13,3) und Endmasseverluste

<table>
<thead>
<tr>
<th>Alter</th>
<th>Gesamt</th>
<th>Durch-</th>
<th>Kernfäule</th>
<th>Endmasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monat</td>
<td>ha</td>
<td>grechen</td>
<td>%</td>
<td>ha</td>
</tr>
<tr>
<td>20</td>
<td>333</td>
<td>6</td>
<td>333</td>
<td>100</td>
</tr>
<tr>
<td>30</td>
<td>3072</td>
<td>0,59</td>
<td>3049</td>
<td>20</td>
</tr>
<tr>
<td>40</td>
<td>1281</td>
<td>1,24</td>
<td>1279</td>
<td>158</td>
</tr>
<tr>
<td>50</td>
<td>2476</td>
<td>2,55</td>
<td>2456</td>
<td>655</td>
</tr>
<tr>
<td>60</td>
<td>7541</td>
<td>3,56</td>
<td>7506</td>
<td>1256</td>
</tr>
<tr>
<td>70</td>
<td>45927</td>
<td>4,39</td>
<td>45716</td>
<td>3131</td>
</tr>
<tr>
<td>80</td>
<td>62928</td>
<td>5,14</td>
<td>62408</td>
<td>3002</td>
</tr>
<tr>
<td>90</td>
<td>75194</td>
<td>5,62</td>
<td>74733</td>
<td>4371</td>
</tr>
<tr>
<td>100</td>
<td>80351</td>
<td>6,50</td>
<td>79719</td>
<td>5612</td>
</tr>
</tbody>
</table>

Je ha Fichtenbestandesklasse

In Tabelle 1 wurde nur unter Zugrundelegung der heutigen Flächenverteilung für die einzelnen Altersstufen die Gesamtwertleistung an Wert des gesamten Ertragstafel

Unterstellen wir für die Fichtenflächen des Körperschaftswal des dieselben Wertverluste mit denen von kernfaulen Fichtenwäldern, so läßt sich für den gesamten öffentlichen Wald der "Nördliche Ostall" ein jährlicher Gesamtverlust von 531.288 DM oder von 34,36 DM je ha Holzboden ermitteln.

Diese Wertverluste beinhalten selbstverständlich nur die Schäden durch kernfaule. Betrachten wir nochmals die Wurzeltiefenrander in Tab. 6 und setzen wir an, daß sich die Stammzahlprozente der Wurzelfläche genauso wie auf das Netto-Wertverlustprozent auswirken wie die der Kernfaule, so müßte für die Gesamtverluste durch Rotfaule die oben angeführten Werte um etwa 20% erhöht werden.

Damit sind die Gemeindeverwaltungen ergeben sich, daß ein höherer Anteil an Erstaustellungen aufweisen, die nach der Unternehmung wesentlich höher verursacht werden und bei der bisherigen Berechnung unberücksichtigt bleiben, kann der jährliche Gesamtverlust für den öffentlichen Wald der Wurzelseitergruppe "Nördliche Ostall" mit rund 650.000 DM angenommen werden.

Denn wir für sämtliche Wurzelbeziehe der Schwäbi- schen Alb im Bereich der Forstverwaltung Neckartübingen dieselben Kernfäuleprozente an, so läßt sich für den öffentlichen Wald von rund 62.000 ha bei einem Fichtenanteil von 46% und einer Umtriebszeit von 100 Jahren ein jährlicher Gesamtverlust von rund 2 Millionen DM abschätzen.

K Möglichkeiten der Schadensmilderung

Die ermittelten enormen Rotfaulschäden führen zwangs- läufig zur Frage der Schadensähmung, bzw. Schadensmilderung. Leider sind hier vorerst die Möglichkeiten sehr eng begrenzt; sie konnten bisher auch durch das Schwerpunktprogramm der Deutschen Forschungsgemeinschaft nicht wesentlich erweitert werden.

1. Bekämpfungsmethoden

Über die Möglichkeiten der aktiven Bekämpfungsmethoden gegen Fomes annulus wurde in der Untersuchung über die Mittlere Alb eingehend berücksichtigt.

Wenn auch Dimitt, Zytha und Kletter (1971) der Behandlung frischer Stücke keine Bedeutung be- messen, so glauben wir doch, daß auf der Mittleren Alb, mindestens in Erstaustellungen, vielleicht aber auch in ersten Generationen auf pleistozeischen Lehmen, die Behand- lung mit Chemikalien bzw. antagonistischen, nicht holzzer- störenden Pilzen, Aussicht auf Erfolge haben kann, sofern die Maßnahmen von der ersten Erstaustellung an kon- sequent durchgeführt werden. Ob allerdings dieses Verfahren auch auf der Ostall mit ihrer wesentlich komplizierteren und wechselnden Schädlingskombination zum Erfolg führen wird, ist fraglich, wenn man von den Erstaustellungen mit hohen Fomes-Anteilen absieht, die auf der Ostall keine so großen Flächen einnehmen wie auf der Mittleren Alb. In den ersten Generationen auf pleistozeichen Lehmen konnte auf der Ostall keine Infektionsverzögerung festgestellt werden; es ist deshalb zu vermuten, daß hier auf dem allge- mein sandigem Standorten die Schädlingsluft bereits aus dem vorhergehenden Laubholzbestand vorhanden sind und daher die Durchschnittsstärken für das Vornorden nicht zu- dürfen.

Auch die Impfung junger Fichtenanpflanzen in Satt- und Verschuldbereichen mit antagonistischen Myko- korrhizabildlern erscheint auf der Ostall mit ihrem zahlreichen Schädlingskombinationen problematischer als auf der Mittleren Alb.

Es wird äußerst schwierig sein, gegen sämtliche vorkommenden Schädlinge einen einzein antagonistisch wirkenden Mykorrhizapilz zu finden. Was jedoch geschehen, wenn wir auf einer bestimm- ten Schädlingskombination nur einen Schädlings (z. B. auch von den anderen beeinflußt wird bzw. diese beeinflußt durch antagonistische Mykorrhizabildung ausschalten, läßt sich vorerst noch nicht abschätzen. Vielleicht scheiden wir dafür für einen anderen Schädlings eine antagonistische Bremse aus, die in der Kombination zur Wirkung kommen. Trotz all dieser Einwände sollte jedoch nicht unterlassen werden, auch auf der Ostall Versuche sowohl mit der Streugutbehandlung als auch mit der Mykorrhiza- bildungsraten.

2. Waldbauliche Möglichkeiten der Schadensmilderung

Bislang stehen uns allerdings nur begrenzte waldbauliche Möglichkeiten zur Schadensmilderung zur Verfügung.

Mischbaumarten

In Abschnitt II.4. wurde festgestellt, daß die Beimisch- ander Baumnarten den Kernfaulebefall der Fichtenbe- stände nicht generell positiv beeinflußt. (Die Ergebnisse der als Erstaustellungen angelegten Fichten-Linden-Versuchs- flächen auf stark kernfaulgefährdeten Standorten müßen ausgewertet werden.) Damit scheiden eine wesentliche Mög- lichkeit der Schadensmilderung durch waldbauliche Maß- nahmen wenigstens vorläufig aus.

Pflanzenverband

Auch auf der Ostall konnte nun ein 82jähriger damals im 3-X-3m-Verband begründeter Bestand untersucht werden.

53
In Tabelle 11 wurden nun, entsprechend dem heutigen Zustand (Tab. 10, dGz 13.3), für die Planung nach Moosmayer (dGz 14.6) für die einzelnen Altschichten die Gesamtwerteleistung an Wert für den gesunden Umrügstiefbestand, die durchschnittliche Kernfäule-Netto-Wertverlustprozente, die Gesamtwerteleistung an Wert für den tatsächlichen rotfälligen Bestand sowie der jährliche Verlust insgesamt berechnet. Jeder Wert basiert auf der Fichtenbetriebklasse bei verschiedenen Umrüsteiten berechnet.

Es zeigt sich, dass durch die geplante Verlagerung der Fichtenflächen der jährliche Verlust durch Kernfäule von 56,62 DM auf 52,51 DM je ha Fichtenbetriebklasse bzw. von 33,73 DM auf 29,21 DM je ha Huboben gesenkt werden kann.

Bedingt man daraus den Gesamtverlust für den Staatswald der Wuchsbezirksgruppe „Nördliche Ostalb“ so ergibt sich für die Planung (unter Einbeziehung von 20% Wundfäulen) bei einer um 536 ha (7.5%) versetzter Fichtenfläche ein Gesamtverlust von 419.219 DM gegenüber 484.416 DM beim heutigen Zustand. Einer durch die Betriebseichtypenplanung verursachten Verringerung der Fichtenflächen um 7.5% steht also eine Vergrößerung des Rotfäule-Gesamtverlustes von 13,4% gegenüber.

Moosmayer (1971) hat berechnet, dass bei der ersten Kartierung der flachgründigen Kalkverwitterungslehme teile der durch die geplante Verlagerung der Fichtenflächen hohen Leistung konnte der durchschnittliche dGz 102 der Fläche von 1,3 auf 14,0 Etmh erhöht werden. Unter der gleichen Voraussetzung wie in Abschnitt I ergibt sich durch die geplante Verlagerung der Fichtenflächen folgende Gruppierung auf die Befallsgruppen:

<table>
<thead>
<tr>
<th>Befallsgruppe</th>
<th>Fichtenfläche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nachtgründliche Kalkverwitterungslehm + frische pleistozäne Lehme</td>
<td>632</td>
</tr>
<tr>
<td>mittelgründliche Kalkverwitterungslehm + mäßig frische pleistozäne Lehme</td>
<td>1639</td>
</tr>
<tr>
<td>Feuersteinlehme</td>
<td>4382</td>
</tr>
</tbody>
</table>

Damit ändern sich selbstverständlich auch die flächenbezogenen durchschnittlichen Kernfäule-Netto-Wertverlustprozente je Altersstufe.

<table>
<thead>
<tr>
<th>Tabelle 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtwerteleistung an Wert (dGz 13.3) und Kernfäuleverlust</td>
</tr>
<tr>
<td>Alter</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

Je ha Fichtenbetriebklasse

54

In Abb. 18 sind die Ausgleichskurven der Kernfäule-Stammzahlprozente auf dieser Standortseinheit in der Ostalb und der Mittleren Alb aufgezeichnet. Die Werte der Mittleren Alb liegen über den ganzen Altersbereich hinweg über denen der Ostalb. Bei den großen mittleren Fehlern (± 3,31% und ± 2,40%) muß jedoch angenommen werden, daß ein gesicherter Unterschied nicht besteht.

Auch bei den Netto-Wertverlustprozenten (Abb. 19) liegt die Ausgleichskurve der Mittleren Alb über der Ostalb. Die Differenz vergrößert sich mit zunehmendem Alter und kann ab Alter 75 als statistisch gesichert angesehen werden. Bei etwa gleichen Stammzahlprozenten ist der Werteverlust vor allem im höheren Alter auf der Ostalb deutlich geringer als in der Mittleren Alb. Dies wird durch einen großen Teil durch die geringere mittlere Flächenhöhe von 2,28 m auf der Ostalb gegenüber 2,83 m auf der Mittleren Alb verursacht.

1. Flachgründiger Kalkverwitterungslehm

In Abb. 18 sind die Ausgleichskurven der Kernfäule-Stammzahlprozente auf dieser Standortseinheit in der Ostalb und der Mittleren Alb aufgezeichnet. Die Werte der Mittleren Alb liegen über den ganzen Altersbereich hinweg über denen der Ostalb, bei den großen mittleren Fehlern (± 3,31% und ± 2,40%) muß jedoch angenommen werden, daß ein gesicherter Unterschied nicht besteht.

Auch bei den Netto-Wertverlustprozenten (Abb. 19) liegt die Ausgleichskurve der Mittleren Alb über der Ostalb. Die Differenz vergrößert sich mit zunehmendem Alter und kann ab Alter 75 als statistisch gesichert angesehen werden. Bei etwa gleichen Stammzahlprozenten ist der Werteverlust vor allem im höheren Alter auf der Ostalb deutlich geringer als in der Mittleren Alb. Dies wird durch einen großen Teil durch die geringere mittlere Flächenhöhe von 2,28 m auf der Ostalb gegenüber 2,83 m auf der Mittleren Alb verursacht.
Während also die Bestände auf dieser Stückerdeinhalt in der Mittleren Alb bereits im Alter 80 neben starken Verflichtungserscheinungen bereits 15% Wertverlust aufweisen, wird auf vergleichbaren Standorten der Ostalb ein Wertverlust von 10% erst im Alter 90 erreicht.

2. Mittelgründiger Kalkvernichtungslehm

In beiden Untersuchungsgebierten ergaben sich große Unterschiede im Karkosebefall zwischen Beständen nach altern Wald und Freiausrüstungen. Wir müssen daher auch beim Regionalvergleich nach diesen Gesichtspunkten trennen.

a) Fichtenbestände nach alterm Wald

Bei den Netto-Wertverlustkurven (Abb. 19) ergibt sich ein ähnliches Bild; ein statistisch gesicherter Unterschied dürfte sich hier jedoch erst ab Alter 110, also außerhalb des Umtriebotszeits ergeben.

b) Fichtenbestände nach Erstaufrüstung

Bei den Wertverlustprozenten (Abb. 21) ergibt sich folgendes: Die Ausgleichskurve der Ackeraufrüstungen der Ostalb ist immer noch deutlich von der der Mittleren Alb abgesetzt, wenn auch der Kurvenverlauf in höherem Alter eine Angleichung erwarten läßt. Dagegen liegen die Netto-Wertverlustprozenten der Weidenausrüstungen der Ostalb bei Alter 60 deutlich über denen der Mittleren Alb; der Unterschied dürfte ab Alter 80 gesichert sein. Auch hier ist die größere durchschnittliche Fäulnislänge auf der Ostalb gegenüber der Mittleren Alb ausschlaggebend.

3. Mäßige Frische pleistozäne Lehme

Bei den Schichte- und Felsbzw. Schlufflehmen haben wir bisher angenommen, daß die insgesamt etwas steuernden Oberbodenverhältnisse der Ostalb geringere Karkosefäulnisse zu Folge hätten als in der Mittleren Alb. Dieser Eindruck wurde jedoch vor allem dadurch hervorgebracht, daß die Bestände bis nach Alter 80 nicht oder nur angedeutet eine künstliche Schadensmeldung erhielten. Im selben Alter mußte auch hinzugefügt werden, daß diese Fäulnisse je nach dem Feuerungsverhalten verschiedene Befallsbereiche angehören. Zur Befallsintensität, mäßige frische pleistozäne Lehme, zählen daher nur die feuerstörmigen Fäulnisse und nur diese können mit der mäßigen frischen pleistozänen Lehmen der Mittleren Alb verglichen werden. Abb. 22 zeigt nun, daß die Ausgleichskurve der Karkose-Stammschädelpzente dieser Erinüinheit auf der Ostalb deutlich (etwa 20%) über das ganze Bestandesleben hinweg höher liegt als die der Mittleren Alb.

Anders die zweiten Generationen auf der Mittleren Alb. Sie zeigen bei etwa gleichem Infektionsbeginn von Anfang an höhere Netto-Wertverlustprozente. Der Unterschied nimmt vor allem ab Alter 60 stark zu und dürfte etwa ab Alter 70 als statistisch gesichert angesehen werden. Dies würde bedeuten, daß auf dieser Befallsphase in der Mittleren Alb eine zweite Generation Picea nur unter erhöhten Verlusten möglich ist (auch die Kulturform des durchschnittlichen Gesamtwachstums an Ort liegt bei Alter 80), während diese auf der Ostalb auf den bisherigen Untersuchungen keine höheren Verluste zeigt.

Das kräftige Zusammenwachsen der Unterschiede in den Karkose-Stammschädelpzentrprozenten (20%) auf die geringen Unterschiede im Werteverlust (2%) zeigt wieder, daß die vielen betreffen Stämme auf der Ostalb eine geringere Holzernte aufweisen müssen, als die wenig betreffen Stämme in der Mittleren Alb. Dies dürfte vielleicht auf den höheren Armillaria- Anteil und die spätere Infektion durch Fomes auf der Ostalb zurückzuführen sein.

4. Frische pleistozäne Lehme

Bei den frühen pleistozänen Lehmen ergab sich auf der Mittleren Alb schon bei den Karkose-Stammschädelpzentrprozenten die Notwendigkeit, zwischen einer und zweiten Generationen zu trennen. Hier allerdings ist die Entwicklung völlig gleichlaufend und die Unterschiede sind lediglich durch den verschiedenen Infektionsbeginn bedingt.

mässig frische pleistozäne Lehme

Kernfäule-Stammzahl

Abb. 22

%

Ostalb

Mittlere Alb

Alter

Jahre

mässig frische pleistozäne Lehme

Netto-Wertverlust

Abb. 23

%

20

10

Mittlere Alb 2. Gen.

Ostalb 1. u. 2. Gen.

Alter

Jahre

5. Gesamtbetrachtung

Insgesamt zeigt sich also, daß mit Ausnahme der Erstaufforstungen nach Weihe die Kalkverwitterungslöcher der Mittleren Alb die höhern Stammmzahl- und Netto-Wertverlustprozente als die der Ostalb aufweisen.

Literatur

Ein ausführliches Literaturverzeichnis ist der Veröffentlichung über die Mittlere Alb in der Nr. 26 dieser Mitteilungen angegliedert.

Anhang zu Werner

Standort und prozentualer Schadpilzanteil

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Einheit</td>
<td></td>
<td>Frucht</td>
<td>Stamms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Nethein IV/13a</td>
<td>TL KVL</td>
<td>62</td>
<td>49</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Steinheim X/26a</td>
<td>TL KVL</td>
<td>85</td>
<td>92</td>
<td>12</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>Hopflingen IV/197</td>
<td>TL KVL E</td>
<td>65</td>
<td>41</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>Hopflingen VIII/15</td>
<td>TL KVL</td>
<td>113</td>
<td>64</td>
<td>15</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>flachgr. Kalkverwitterungsoehrn</td>
<td></td>
<td>61</td>
<td>43</td>
<td>43</td>
<td>67%</td>
<td>25%</td>
<td>5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Kapfenburg VI/18</td>
<td>m KVL 2. Gen.</td>
<td>65</td>
<td>31</td>
<td>31</td>
<td>11</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>" X/10a</td>
<td>m KVL 2. Gen.</td>
<td>66</td>
<td>23</td>
<td>9</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Heidenheim I/29</td>
<td>m KVL</td>
<td>69</td>
<td>20</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>" I/30a</td>
<td>m KVL</td>
<td>63</td>
<td>28</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>" IV/3a</td>
<td>m KVL</td>
<td>94</td>
<td>28</td>
<td>11</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Steinheim LX/7a</td>
<td>m KVL 2. Gen.</td>
<td>93</td>
<td>17</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Heidenheim I/30</td>
<td>m KVL</td>
<td>81</td>
<td>19</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Nethein VI/10a</td>
<td>m KVL</td>
<td>60</td>
<td>11</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Buntz III/17</td>
<td>m KVL</td>
<td>87</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Heidenheim II/5a</td>
<td>m KVL</td>
<td>103</td>
<td>44</td>
<td>10</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>Hopflingen VIII/2a</td>
<td>m KVL</td>
<td>114</td>
<td>41</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mittelgr. KVL Reingestände</td>
<td></td>
<td>70</td>
<td>23</td>
<td>98</td>
<td>78%</td>
<td>25%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>Hopflingen I/14a</td>
<td>m KVL M 2 Bu</td>
<td>98</td>
<td>16</td>
<td>11</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Kapfenburg IV/10a</td>
<td>m KVL M 2 Bu</td>
<td>85</td>
<td>27</td>
<td>11</td>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>Hopflingen 1/5a</td>
<td>m KVL M 2 Bu</td>
<td>87</td>
<td>35</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mittelgr. KVL Mischbestände</td>
<td></td>
<td>85</td>
<td>26</td>
<td>53</td>
<td>42%</td>
<td>59%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>Nethein IV/15a</td>
<td>m KVL E W</td>
<td>50</td>
<td>36</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Königsegg 1/25</td>
<td>m KVL E W</td>
<td>68</td>
<td>46</td>
<td>11</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>Königsegg 1/29a</td>
<td>m KVL E W</td>
<td>70</td>
<td>77</td>
<td>13</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mittelgr. KVL Erntebestände</td>
<td></td>
<td>61</td>
<td>60</td>
<td>32</td>
<td>98%</td>
<td>2%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

61
| Nr. | Forstamt | Distr. | Abt. | Standort- einheit | Alter | Kern-
zahl | unter- | Spezies | Antillaris | Odontia | Stereum |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>159</td>
<td>Oberrothen III/69</td>
<td>SL</td>
<td>2. Gen.</td>
<td>45</td>
<td>23</td>
<td>11</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Königsbronn I/20a</td>
<td>SL</td>
<td>2</td>
<td>61</td>
<td>44</td>
<td>12</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Kapfenburg VII/17</td>
<td>SL</td>
<td>2. Gen.</td>
<td>62</td>
<td>43</td>
<td>12</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Rapfingen IV/22</td>
<td>SL</td>
<td>2. Gen.</td>
<td>65</td>
<td>28</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Rapfingen VIII/19</td>
<td>SL</td>
<td>2. Gen.</td>
<td>72</td>
<td>50</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>" YL/11a</td>
<td>SL</td>
<td>73</td>
<td>44</td>
<td>9</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>Steinheim VII/26</td>
<td>SL</td>
<td>101</td>
<td>54</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>" IV/3a</td>
<td>SL</td>
<td>104</td>
<td>51</td>
<td>15</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Schichten - Rohbestände

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>197</td>
<td>Rapfingen VII/29</td>
<td>SL</td>
<td>4</td>
<td>46</td>
<td>17</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>" YL/10a</td>
<td>SL</td>
<td>52</td>
<td>32</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>" YL/10a</td>
<td>SL</td>
<td>56</td>
<td>47</td>
<td>11</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Rapfingen IV/1a</td>
<td>SL</td>
<td>34</td>
<td>42</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>" YL/3b</td>
<td>SL</td>
<td>100</td>
<td>57</td>
<td>11</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Rapfingen II/27</td>
<td>SL</td>
<td>7</td>
<td>11</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Schichten - Frischbestände

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>168</td>
<td>Knaut VIII/22</td>
<td>Schl</td>
<td>50</td>
<td>32</td>
<td>12</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>Rapfingen VII/10</td>
<td>Schl</td>
<td>55</td>
<td>23</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Kapfenburg X/10a</td>
<td>Schl</td>
<td>60</td>
<td>36</td>
<td>13</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>" VII/25</td>
<td>Schl</td>
<td>60</td>
<td>26</td>
<td>12</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>" X/10b</td>
<td>Schl</td>
<td>63</td>
<td>32</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>Heidenheim III/16</td>
<td>Schl</td>
<td>68</td>
<td>47</td>
<td>12</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>Rapfingen VI/15</td>
<td>Schl</td>
<td>69</td>
<td>49</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Schluffehm

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>166</td>
<td>Mattheim IV/29</td>
<td>Mu</td>
<td>51</td>
<td>37</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>" IV/10a</td>
<td>Mu</td>
<td>54</td>
<td>37</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>" ST/16</td>
<td>Mu</td>
<td>61</td>
<td>60</td>
<td>11</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Königsbronn I/51</td>
<td>Mu</td>
<td>110</td>
<td>68</td>
<td>8</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frische pleistozäne Lekame

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>Mattheim IV/29</td>
<td>Mu</td>
<td>51</td>
<td>37</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>" IV/10a</td>
<td>Mu</td>
<td>54</td>
<td>37</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>" ST/16</td>
<td>Mu</td>
<td>61</td>
<td>60</td>
<td>11</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Königsbronn I/51</td>
<td>Mu</td>
<td>110</td>
<td>68</td>
<td>8</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

friese pleistozäne Lekame

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>Mattheim IV/29</td>
<td>Mu</td>
<td>51</td>
<td>37</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>" IV/10a</td>
<td>Mu</td>
<td>54</td>
<td>37</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>" ST/16</td>
<td>Mu</td>
<td>61</td>
<td>60</td>
<td>11</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Königsbronn I/51</td>
<td>Mu</td>
<td>110</td>
<td>68</td>
<td>8</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pl. Nr.</td>
<td>Forsch. Einheit</td>
<td>Alter</td>
<td>Knochenzahl</td>
<td>Formen</td>
<td>Aramara</td>
<td>Odontia</td>
<td>Stereum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>-------</td>
<td>--------------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>Boppingen IV/5a</td>
<td>FSL</td>
<td>63 18 15 11 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Oberrothen IV/4a</td>
<td>FSL</td>
<td>66 9 5 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>" V/3a</td>
<td>FSL</td>
<td>51 18 9 7 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>" I/205</td>
<td>FSL</td>
<td>78 22 10 5 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Heidenheim I/196</td>
<td>FSL</td>
<td>81 8 5 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>Boppingen VI/10</td>
<td>FSL</td>
<td>92 18 5 2 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Königstein I/17</td>
<td>FSL</td>
<td>99 21 5 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feuerstein - Schicht A</td>
<td></td>
<td>81 14 52 47% 45% 10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>Königstein II/12</td>
<td>Fschl 2. Jen.</td>
<td>83 16 8 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Steinheim I/4a</td>
<td>Fschl</td>
<td>52 20 12 4 3 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>Heidenheim III/17</td>
<td>Fschl</td>
<td>81 18 10 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Oberrothen IV/14</td>
<td>Fschl</td>
<td>84 17 6 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>" III/24</td>
<td>Fschl</td>
<td>85 9 5 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>" III/11</td>
<td>Fschl</td>
<td>88 9 5 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Königstein III/15</td>
<td>Fschl</td>
<td>88 18 11 1 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>" III/20</td>
<td>Fschl</td>
<td>98 7 4 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Steinheim II/1a</td>
<td>Fschl</td>
<td>115 34 11 5 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feuerstein - Schicht B</td>
<td></td>
<td>81 16 72 45% 45% 10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>Schw. Grün X/a</td>
<td>Kol. 2. Gen.</td>
<td>51 17 10 1 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Steinheim I/10a</td>
<td>Kol.</td>
<td>67 16 7 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>" II/104</td>
<td>Kol.</td>
<td>67 27 11 2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Oberrothen III/25</td>
<td>Kol.</td>
<td>71 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Steinheim I/4a</td>
<td>Kol.</td>
<td>82 28 12 5 2 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Königstein III/23</td>
<td>Kol.</td>
<td>92 15 7 4 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>Oberrothen III/20</td>
<td>Kol.</td>
<td>95 11 6 4 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oxalis - Krytillex - Typ</td>
<td></td>
<td>75 16 54 44% 47% 9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>Schw. Grün X/a</td>
<td>Kol. 2. Gen.</td>
<td>52 6 3 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Königstein II/13</td>
<td>Kol.</td>
<td>52 5 4 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Kapfenburg I/12</td>
<td>Kol. 2. Gen.</td>
<td>52 10 4 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>Schw. Grün II/1</td>
<td>Kol.</td>
<td>60 11 7 2 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Oberrothen IV/11</td>
<td>Kol.</td>
<td>80 7 4 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>Schw. Grün X/a</td>
<td>Kol.</td>
<td>87 10 6 5</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>" X/a</td>
<td>Kol.</td>
<td>89 10 4 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Zapfenburg XT/28</td>
<td>Kol.</td>
<td>99 21 6 3 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>" VII/5a</td>
<td>Kol.</td>
<td>105 23 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Krytillex - Schröberi - Typ</td>
<td></td>
<td>75 11 45 45% 43% 8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feuerstein - Schicht C</td>
<td></td>
<td>225 46% 45% 9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY

Title: The Influence of Site and Stand Conditions on Heart Rot in Norway Spruce Stands of the Eastern Swabian Alb.

In No. 20 of this journal (1971), H. Werner presented the results of a statistical study of heart rot in Norway spruce stands of the central Swabian Alb (see Summary, p. 48—49). This paper presents the results of further investigations in the eastern part of the Swabian Alb (Figure 1), using the same method. These investigations on heart rot pertain to (1) Norway spruce (Picea abies HARR.) stands of the first, second, and third generations on sites which formerly supported native hardwoods, (2) first generation afforestations of spruce on old agricultural land and sheep pastures, and (3) mixed stands of spruce and beech. In addition to the statistical study of Werner, needle analyses were carried out by Evers and mycological investigations were carried out by Schönhwar.

As described in the earlier study (No. 20, 1971, p. 48), site units exhibiting similar heart rot conditions were grouped together into site-unit-groups. Moreover, due to differences of stand history, subgroups (Befallsbereiche) were differentiated within a site unit or a site-unit-group. For stands of each subunit two curves were developed: 1. the percentage of diseased trees over age, and 2. the net value loss due to disease over age (Figures 2—7; 9—23).

The proportion of stems attacked by heart rot throughout the life of a stand for five different site-unit-groups is presented in Figure 15. The relationships shown were found for spruce stands established following the removal of the native deciduous forest. For example, at age 100 the proportion of stems attacked by heart rot in the best site-unit-group (Feuerstein-Lehm) was 20 percent, whereas that for the poorest group (frische pleistozaäle Lehme) was 75 percent.

For the site unit “mittelgründiger Kalkvorwitterungslehme” (moderately deep decomposed limestone soils), three subgroups (Befallsbereiche) were investigated (Figure 16): (1) “Alter Wald” (spruce stands established following removal of the native deciduous forest), (2) “Erstaufforstungen nach Acker” (old-field afforestations following cultivation) and (3) “Erstaufforstungen nach Weide” (first generation afforestations on pasture land). As may be seen in Figure 16, the incidence of heart rot at age 80 is 26 percent for subgroup (1), 50 percent for subgroup (2), and 70 percent for subgroup (3). The cause of these differences has not yet been determined.

In all site units and subgroups, stem sections were taken from spruce trees exhibiting heart rot. The occurrence of the most important destructive fungi: Fomes annosus, Armillaria mellea, and Odontia bicolor, was investigated by S. Schönhwar (Section I, Table in the Anhang, Table 3 and Section II, 7). Fomes annosus and Armillaria mellea were found to be the main causes of heart rot in the study area. The proportion of each of these fungi to the total number of fungi isolated and identified, apportioned by site unit and subgroup, were presented in Table 3. Fomes annosus accounted for 57 percent of the total and Armillaria mellea accounted for 36 percent (together 93 percent). Fomes annosus attains its highest percent occurrence in pure spruce stands on decomposed limestone soils (67 to 75 percent in plantations following native hardwoods; 96 percent in first generation afforestations on former sheep pastures). In contrast, its occurrence is notably low, 42 percent, in mixed stands of spruce and beech on decomposed limestone soils. Armillaria mellea had a proportion of 83 percent in the group “fresh Pleistocene loams” (frische pleistozaäle Lehme).

In Part II (Discussion) the following individual topics were brought together and discussed: 1) heart rot and site, 2) heart rot and old-field afforestation, 3) heart rot and spruce generation, 4) heart rot and mixed stands, 5) heart rot and nutrient status of spruce, and 6) heart rot and fertilization.

In Part III, the heart-rot incidence on comparatively similar sites of the eastern and central Swabian Alb are compared; the similarities and differences are apparent. Large differences occur particularly on fresh Pleistocene loams of the areas (Figure 24); this apparently occurs due to the relative proportions of Fomes annosus and Armillaria mellea present in the respective areas. In the eastern Alb Armillaria is more abundant (see Table 3) whereas in the central Alb Fomes annosus is the more prevalent.